Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: A growing body of research has demonstrated associations between specific neurodevelopmental disorders and variation in DNA methylation (DNAm), implicating this molecular mark as a possible contributor to the molecular etiology of these disorders and/or as a novel disease biomarker. Furthermore, genetic risk variants of neurodevelopmental disorders have been found to be enriched at loci associated with DNAm patterns, referred to as methylation quantitative trait loci (mQTLs).
Methods: We conducted two epigenome-wide association studies in individuals with attention-deficit/hyperactivity disorder (ADHD) or obsessive-compulsive disorder (OCD) (aged 4-18 years) using DNA extracted from saliva. DNAm data generated on the Illumina Human Methylation 450 K array were used to examine the interaction between genetic variation and DNAm patterns associated with these disorders.
Results: Using linear regression followed by principal component analysis, individuals with the most endorsed symptoms of ADHD or OCD were found to have significantly more distinct DNAm patterns from controls, as compared to all cases. This suggested that the phenotypic heterogeneity of these disorders is reflected in altered DNAm at specific sites. Further investigations of the DNAm sites associated with each disorder revealed that despite little overlap of these DNAm sites across the two disorders, both disorders were significantly enriched for mQTLs within our sample.
Conclusions: Our DNAm data provide insights into the regulatory changes associated with genetic variation, highlighting their potential utility both in directing GWAS and in elucidating the pathophysiology of neurodevelopmental disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429807 | PMC |
http://dx.doi.org/10.1186/s11689-020-09324-3 | DOI Listing |