Examining coastal dynamics and recreational water quality by quantifying multiple sewage specific markers in a North Carolina estuary.

Sci Total Environ

University of North Carolina Institute of Marine Sciences, Morehead City, NC, United States of America; Department of Environmental Sciences and Engineering, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, United States of America. Electronic address: rtnoble@e

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fecal contamination is observed downstream of municipal separate storm sewer systems in coastal North Carolina. While it is well accepted that wet weather contributes to this phenomenon, less is understood about the contribution of the complex hydrology in this low-lying coastal plain. A quantitative microbial assessment was conducted in Beaufort, North Carolina to identify trends and potential sources of fecal contamination in stormwater receiving waters. Fecal indicator concentrations were significantly higher in receiving water downstream of a tidally submerged outfall compared to an outfall that was permanently submerged (p < 0.001), though tidal height was not predictive of human-specific microbial source tracking (MST) marker concentrations at the tidally submerged site. Short-term rainfall (i.e. <12 h) was predictive of E. coli, Enterococcus spp., and human-specific MST marker concentrations (Fecal Bacteroides, BacHum, and HF183) in receiving waters. The strong correlation between 12-hr antecedent rainfall and Enterococcus spp. (r = 0.57, p < 0.001, n = 92) suggests a predictive model could be developed based on rainfall to communicate risk for bathers. Additional molecular marker data indicates that the delivery of fecal sources is complex and highly variable, likely due to the influence of tidal influx (saltwater intrusion from the estuary) into the low-lying stormwater pipes. In particular, elevated MST marker concentrations (up to 2.56 × 10 gene copies HF183/mL) were observed in standing water near surcharging street storm drain. These data are being used to establish a baseline for stormwater dynamics prior to dramatic rainfall in 2018 and to characterize the interaction between complex stormwater dynamics and water quality impairment in coastal NC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.141124DOI Listing

Publication Analysis

Top Keywords

north carolina
12
fecal contamination
8
examining coastal
4
coastal dynamics
4
dynamics recreational
4
recreational water
4
water quality
4
quality quantifying
4
quantifying multiple
4
multiple sewage
4

Similar Publications

Introduction: Medical physicists play a critical role in ensuring image quality and patient safety, but their routine evaluations are limited in scope and frequency compared to the breadth of clinical imaging practices. An electronic radiologist feedback system can augment medical physics oversight for quality improvement. This work presents a novel quality feedback system integrated into the Epic electronic medical record (EMR) at a university hospital system, designed to facilitate feedback from radiologists to medical physicists and technologist leaders.

View Article and Find Full Text PDF

Whole genome sequence analysis of low-density lipoprotein cholesterol across 246 K individuals.

Genome Biol

September 2025

Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.

Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.

View Article and Find Full Text PDF

The transition from traditional animal-based approaches and assessments to New Approach Methodologies (NAMs) marks a scientific revolution in regulatory toxicology, with the potential of enhancing human and environmental protection. However, implementing the effective use of NAMs in regulatory toxicology has proven to be challenging, and so far, efforts to facilitate this change frequently focus on singular technical, psychological or economic inhibitors. This article takes a system-thinking approach to these challenges, a holistic framework for describing interactive relationships between the components of a system of interest.

View Article and Find Full Text PDF