Effect of increasing oxygen partial pressure on Saccharomyces cerevisiae growth and antioxidant and enzyme productions.

Appl Microbiol Biotechnol

Chair of Biotechnology, LGPM, CentraleSupélec, Université Paris-Saclay, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres, 51110, Pomacle, France.

Published: September 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study investigated the impact of oxygen partial pressure on yeast growth. Saccharomyces cerevisiae cells were exposed to various hyperbaric air conditions from 1 bar to 9 bar absolute pressure (A). Batch cultures were grown under continuous airflow in a 750 mL (500 mL culture) bioreactor and monitored through growth rate and specific yields of ethanol and glycerol. In addition, the concentrations of antioxidant metabolites glutathione (reduced state, GSH and oxidized state, GSSG) and the activity of antioxidative enzymes superoxide dismutases (SOD) and catalases (CAT) were monitored. The results demonstrated that the different oxygen partial pressures significantly impacted the key growth parameters monitored. Compared with atmospheric pressure, under 2 to 5 bar (A), yeast cells showed higher growth rates (μ = 0.32 ± 0.01 h) and higher catalase (CAT) concentrations (214 ± 5 mU/g). GSH/GSSG ratio (6.36 ± 0.37) maintained until 6 bar (A) and total SOD (240 ± 5 mU/g) level significantly increased compared with 2 bar (A) until 7 bar (A). Under 6 to 9 bar (A), cell growth was inhibited, and a pressure of 9 bar (A) led to excessive GSSG accumulation (GSH/GSSG = 0.31 ± 0.06). The inhibition of t-SOD (160 ± 3 mU/g) and CAT (62.73 ± 0.2 mU/g) was observed under 9 bar (A). A reference experiment (8 bar (A) N + 1 bar (A) air) confirmed that the observed behaviors were entirely due to O. In addition to their utility in biotechnological process design, these results showed that growth impairment was solely due to oxidative stress induced by excessive oxygen pressure. KEY POINTS: • Yeast cells were grown in batch mode under 1 to 9 bar (A) air pressures and up to 5 bar (A) promoted then hindered growth. • The GSH/GSSG ratio was stable up to 5 bar (A) then GSSG accumulated to excess. • Complementary investigations of the activity of SOD and CAT validated growth limitations due to oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-020-10824-4DOI Listing

Publication Analysis

Top Keywords

oxygen partial
12
growth
9
partial pressure
8
saccharomyces cerevisiae
8
yeast cells
8
oxidative stress
8
pressure
6
9 bar
5
increasing oxygen
4
pressure saccharomyces
4

Similar Publications

Introduction: Distraction methods such as virtual reality and cold vibration devices (Buzzy) are recommended during vascular access. Few studies focused on distraction during intramuscular injection.

Methods: This study evaluated the effect of distraction methods on procedure-related pain, fear, and anxiety during the intramuscular injection in children aged 5 to 12 years in the pediatric emergency department.

View Article and Find Full Text PDF

Objective: Ex vivo lung perfusion (EVLP) has resulted in a significant increase in the use of extended-criteria donor lungs without negatively impacting survival outcomes. However, in-house EVLP is resource-intensive, thereby limiting accessibility. Remote, centralized EVLP (rc-EVLP) has been used with acceptable outcomes in a highly protocolized feasibility study, although has not been assessed in a clinical setting.

View Article and Find Full Text PDF

Impact of ventilation sufficiency in prognosis of high-flow treated hypoxemic respiratory failure: A retrospective study.

Medicine (Baltimore)

September 2025

Department of Chest Diseases, Health Ministry of the Turkish Republic, Bursa City Hospital, Bursa, Türkiye.

Using high-flow nasal cannula (HFNC) in patients with hypoxemic respiratory failure to avoid intubation raises concerns about its potential to increase mortality due to delayed intubation. Identifying at-risk patients is essential. While the literature predicts risk with oxygen-based indices (ROX, SpO2/FiO2, PaO2/FiO2), we aimed to detect ventilation insufficiency.

View Article and Find Full Text PDF

Rationale: In intensive care unit (ICU) patients lower oxygenation targets may impair long-term cognitive function, while higher targets may impair long-term pulmonary function.

Objectives: To assess the effects of a partial pressure of arterial oxygen (PaO) target of 60 vs 90 mmHg on one-year cognitive and pulmonary functions in ICU survivors of acute hypoxemic respiratory failure.

Methods: 3654 patients were randomized in the Handling Oxygenation Targets in the ICU and the Handling Oxygenation Targets in COVID-19 trials: 1916 (52.

View Article and Find Full Text PDF

Left-sided partial anomalous pulmonary venous return (PAPVR) may remain clinically silent and undiagnosed until incidentally identified, potentially introducing complexity in perioperative assessment and management, particularly in patients with significant comorbidities. We report the case of a 77-year-old male with metastatic colorectal adenocarcinoma and a history of multiple right-sided pulmonary metastasectomies. He underwent a right completion upper bilobectomy.

View Article and Find Full Text PDF