98%
921
2 minutes
20
The human body harbours a large variety of microbial communities. It is already well-known that these communities play an important role in human health. Therefore, microbial imbalances can be responsible for several health disorders by different mechanisms. In recent years, probiotic bacteria have been increasingly applied to restore imbalances and stimulate microbiome functions such as immune modulation. Tablets are the dosage form of choice for oral probiotics. Nevertheless, a probiotic tablet with a sufficient amount of viable cells remains a challenge due to the stress of the compression process. Recent research demonstrated that the applied pressure and tableting properties play an important role in the survival of Lacticaseibacillus rhamnosus GG during direct compression. This study focused on the importance of the cell surface molecules in the protection of this prototype probiotic strain during direct compression. Spray-dried powders of L. rhamnosus GG and its exopolysaccharide-deficient mutant and lipoteichoic acid mutant were blended with two different filler-binders and compacted at various compression pressures. Under each tableting condition, the survival rate and tableting properties were analysed. The results demonstrated that the cell surface molecules play an important role in the behaviour of L. rhamnosus GG during direct compression. Specifically, the long, galactose-rich exopolysaccharides of L. rhamnosus served a protective shield during tablet production, promoting the survival rate of this probiotic strain. The D-alanylation of the lipoteichoic acids plays also an important role. When the D-alanyl ester content was completely absent, the survival rate was less affected by the tableting properties. Moreover, this research revealed that the sensitivity to the tableting properties is species and strain dependent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2020.119755 | DOI Listing |
Macromol Rapid Commun
September 2025
School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, China.
At present, flexible sensors are a hot spot in research and experimental development, but the research on flexible sensors that can be used for human motion monitoring still needs to be deepened. In this work, the green material cellulose acetate (CA) was used as the matrix material, the film was made by electrospinning, crushed by a cell grinder and sodium alginate (SA) was added to promote the uniform dispersion of nanofibers in water, and then methyltrimethoxysilane (MTMS) and MXene nanosheet dispersion were added to make it hydrophobic and good conductivity, and the aerogel precursor solution was prepared, and then the CA/SA/MTMS/MXene aerogel with directional holes was prepared by directional freeze-drying. As a flexible sensor material, it can be used for human wear, monitoring the electrical signals generated by the movement of human joints and other parts, and can still maintain a current of about 0.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Center of Materials and Nanotechnologies (CEMNAT), Faculty of Chemical Technology, University of Pardubice, nam. Cs legii 565, 530 02 Pardubice, Czech Republic.
Joint direct microscopy-calorimetry measurements of crystal growth were performed for a 60 nm amorphous Sb2S3 film deposited either on a Kapton foil or on a soda-lime glass. Calorimetric crystallization proceeded in two steps, originating either from mechanical and stress-induced defects (230-275 °C) or from homogeneously formed nuclei (255-310 °C); both processes exhibited an identical activation energy of 200 kJ mol-1. At temperatures <230 °C, a Sb2O3 crystalline phase formed along the rhombohedral Sb2S3 structure.
View Article and Find Full Text PDFACS Omega
September 2025
National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China.
Conventional acidizing struggles to remove complex, organic-rich scales in oil wells, and while strong organic solvents can help, their high cost and safety risks limit field use. To overcome these shortcomings, we developed a low-cost, safe permeability-enhanced-dispersion (PD) technique that first loosens and disperses the scale and then applies acid for thorough cleanup. The PD fluid (DL) contains a mutually soluble fatty alcohol amide phosphate dispersant (DL-F), ethanol, a surfactant blend, and a self-generating acid.
View Article and Find Full Text PDFSci Technol Adv Mater
August 2025
Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan.
We measured the residual stress tensor in a nitrogen-doped chemical vapor deposition (001) diamond film. The stress tensor was evaluated from the amount of the shift in optically detected magnetic resonance (ODMR) spectra of NV center in the diamond. A confocal microscopy setup was used to observe the spatial variation of the stress tensor in the diamond film.
View Article and Find Full Text PDFAppl Phys B
September 2025
Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Unlabelled: In the framework of the Argon Power Cycle, millisecond-pulsed hydrogen gas injections into a high-pressure, room temperature nitrogen or argon ambient are investigated. Instantaneous Rayleigh scattering is used to quantify the hydrogen mole fraction in the ensuing jets. A readily available HDEV injector with a straight 0.
View Article and Find Full Text PDF