A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Whole-brain signatures of functional connectivity after bidirectional modulation of the dopaminergic system in mice. | LitMetric

Whole-brain signatures of functional connectivity after bidirectional modulation of the dopaminergic system in mice.

Neuropharmacology

Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach Riß, Germany. Electronic address:

Published: November 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

While neuropsychiatric drugs influence neural activity across multiple brain regions, the current understanding of their mechanism of action derives from studies that investigate an influence of a given drug onto a pre-selected and small number of brain regions. To understand how neuropsychiatric drugs affect coordinated activity across brain regions and to detect the brain regions most relevant to pharmacological action in an unbiased way, studies that assess brain-wide neuronal activity are paramount. Here, we used whole-brain immunostaining of the neuronal activity marker cFOS, and graph theory to generate brain-wide maps of neuronal activity upon pharmacological challenges. We generated brain-wide maps 2.5 h after treatment of the atypical dopamine transporter inhibitor modafinil (10, 30, and 100 mg/kg) or the vesicular monoamine transporter 2 inhibitor tetrabenazine (0.25, 0.5 and 1 mg/kg). Modafinil increased the number of cFOS positive neurons in a dose-dependent manner. Moreover, modafinil significantly reduced functional connectivity across the entire brain. Graph theory analysis revealed that modafinil decreased the node degree of cortical and subcortical regions at the three doses tested, followed by a reduction in global efficiency. Simultaneously, we identified highly interconnected hub regions that emerge exclusively upon modafinil treatment. These regions were the mediodorsal thalamus, periaqueductal gray, subiculum, and rhomboid nucleus. On the other hand, while tetrabenazine had mild effects on cFOS counts, it reduced functional connectivity across the entire brain, cortical node degree, and global efficiency. As hub regions, we identified the substantia innominata and ventral pallidum. Our results uncovered novel mechanisms of action at a brain-wide scale for modafinil and tetrabenazine. Our analytical approach offers a tool to characterize signatures of whole-brain functional connectivity for drug candidates and to identify potential undesired effects at a mesoscopic scale. Additionally, it offers a guide towards targeted experiments on newly identified hub regions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2020.108246DOI Listing

Publication Analysis

Top Keywords

functional connectivity
16
brain regions
16
neuronal activity
12
hub regions
12
regions
9
neuropsychiatric drugs
8
graph theory
8
brain-wide maps
8
transporter inhibitor
8
reduced functional
8

Similar Publications