98%
921
2 minutes
20
Background: For more than 16 years, we have selectively bred rats for either high or low levels of exploratory activity within a novel environment. These bred high-responder (bHR) and bred low-responder (bLR) rats model temperamental extremes, exhibiting large differences in internalizing and externalizing behaviors relevant to mood and substance use disorders.
Methods: We characterized persistent differences in gene expression related to bHR/bLR phenotype across development and adulthood in the hippocampus, a region critical for emotional regulation, by meta-analyzing 8 transcriptional profiling datasets (microarray and RNA sequencing) spanning 43 generations of selective breeding (postnatal day 7: n = 22; postnatal day 14: n = 49; postnatal day 21: n = 21; adult: n = 46; all male). We cross-referenced expression differences with exome sequencing within our colony to pinpoint candidates likely to mediate the effect of selective breeding on behavioral phenotype. The results were compared with hippocampal profiling from other bred rat models.
Results: Genetic and transcriptional profiling results converged to implicate multiple candidate genes, including two previously associated with metabolism and mood: Trhr and Ucp2. Results also highlighted bHR/bLR functional differences in the hippocampus, including a network essential for neurodevelopmental programming, proliferation, and differentiation, centering on Bmp4 and Mki67. Finally, we observed differential expression related to microglial activation, which is important for synaptic pruning, including 2 genes within implicated chromosomal regions: C1qa and Mfge8.
Conclusions: These candidate genes and functional pathways may direct bHR/bLR rats along divergent developmental trajectories and promote a widely different reactivity to the environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7704921 | PMC |
http://dx.doi.org/10.1016/j.biopsych.2020.05.024 | DOI Listing |
Diagn Pathol
September 2025
Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
Background: Gastric cancer is one of the most common cancers worldwide, with its prognosis influenced by factors such as tumor clinical stage, histological type, and the patient's overall health. Recent studies highlight the critical role of lymphatic endothelial cells (LECs) in the tumor microenvironment. Perturbations in LEC function in gastric cancer, marked by aberrant activation or damage, disrupt lymphatic fluid dynamics and impede immune cell infiltration, thereby modulating tumor progression and patient prognosis.
View Article and Find Full Text PDFGenome Biol
September 2025
Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Biology, Plön, Germany.
Background: Most RNA-seq datasets harbor genes with extreme expression levels in some samples. Such extreme outliers are usually treated as technical errors and are removed from the data before further statistical analysis. Here we focus on the patterns of such outlier gene expression to investigate whether they provide insights into the underlying biology.
View Article and Find Full Text PDFNat Immunol
September 2025
Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
CD4 T follicular helper (T) cells support tailored B cell responses against multiple classes of pathogens. To reveal how diverse T phenotypes are established, we profiled mouse T cells in response to viral, helminth and bacterial infection. We identified a core T signature that is distinct from CD4 T follicular regulatory and effector cells and identified pathogen-specific transcriptional modules that shape T function.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
September 2025
Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, 24105 Kiel University, Kiel, Schleswig-Holstein, Germany.
Urinary tract infections (UTIs) are among the most common bacterial infections and are increasingly complicated by multidrug resistance (MDR). While Escherichia coli is frequently implicated, the contribution of broader microbial communities remains less understood. Here, we integrate metatranscriptomic sequencing with genome-scale metabolic modeling to characterize active metabolic functions of patient-specific urinary microbiomes during acute UTI.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom.
The mammary gland, which primarily develops postnatally, undergoes significant changes during pregnancy and lactation to facilitate milk production. Through the generation and analysis of 480 transcriptomes, we provide the most detailed allelic expression map of the mammary gland, cataloguing cell-type-specific expression from ex-vivo purified cell populations over 10 developmental stages, enabling comparative analysis. The work identifies genes involved in the mammary gland cycle, parental-origin-specific and genetic background-specific expression at cellular and temporal resolution, genes associated with human lactation disorders and breast cancer.
View Article and Find Full Text PDF