A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Optical Clearing of Skeletal Muscle Bundles Engineered in 3-D Printed Templates. | LitMetric

Optical Clearing of Skeletal Muscle Bundles Engineered in 3-D Printed Templates.

Ann Biomed Eng

Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles, CA, 90089, USA.

Published: February 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many techniques for engineering and interrogating three-dimensional (3-D) muscle bundles from animal- or patient-derived myoblasts have recently been developed to overcome the limitations of existing in vitro and in vivo model systems. However, many approaches for engineering 3-D muscle bundles rely on specialized and time-consuming techniques, such as photolithography for fabrication and cryosectioning for histology. Cryosectioning also limits visualization to a single plane instead of the entire 3-D structure. To address these challenges, we first implemented a consumer-grade 3-D-printer to rapidly prototype multiple templates for engineering muscle bundles. We then employed our templates to engineer 3D muscle bundles and identify template geometries that promoted bundle survival over three weeks. Subsequently, we implemented tissue clearing, immunostaining, and confocal imaging to acquire z-stacks of intact muscle bundles labelled for myogenic markers. With this approach, we could select the imaging plane on-demand and visualize the intact 3-D structure of bundles. However, tissue clearing did cause some tissue degradation that should be considered. Together, these advances in muscle tissue engineering and imaging will accelerate the use of these 3-D tissue platforms for disease modeling and therapeutic discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10439-020-02583-0DOI Listing

Publication Analysis

Top Keywords

muscle bundles
24
3-d muscle
8
3-d structure
8
tissue clearing
8
muscle
7
bundles
7
3-d
6
tissue
5
optical clearing
4
clearing skeletal
4

Similar Publications