A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Probing Tissue Microarchitecture of the Baby Brain via Spherical Mean Spectrum Imaging. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

During the first years of life, the human brain undergoes dynamic spatially-heterogeneous changes, invo- lving differentiation of neuronal types, dendritic arbori- zation, axonal ingrowth, outgrowth and retraction, synaptogenesis, and myelination. To better quantify these changes, this article presents a method for probing tissue microarchitecture by characterizing water diffusion in a spectrum of length scales, factoring out the effects of intra-voxel orientation heterogeneity. Our method is based on the spherical means of the diffusion signal, computed over gradient directions for a set of diffusion weightings (i.e., b -values). We decompose the spherical mean profile at each voxel into a spherical mean spectrum (SMS), which essentially encodes the fractions of spin packets undergoing fine- to coarse-scale diffusion proce- sses, characterizing restricted and hindered diffusion stemming respectively from intra- and extra-cellular water compartments. From the SMS, multiple orientation distribution invariant indices can be computed, allowing for example the quantification of neurite density, microscopic fractional anisotropy ( μ FA), per-axon axial/radial diffusivity, and free/restricted isotropic diffusivity. We show that these indices can be computed for the developing brain for greater sensitivity and specificity to development related changes in tissue microstructure. Also, we demonstrate that our method, called spherical mean spectrum imaging (SMSI), is fast, accurate, and can overcome the biases associated with other state-of-the-art microstructure models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688284PMC
http://dx.doi.org/10.1109/TMI.2020.3001175DOI Listing

Publication Analysis

Top Keywords

spherical spectrum
12
probing tissue
8
tissue microarchitecture
8
spectrum imaging
8
indices computed
8
spherical
5
diffusion
5
microarchitecture baby
4
baby brain
4
brain spherical
4

Similar Publications