A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Revisiting HBV resistance to entecavir with a phenotypic approach. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Treatment adaptation after hepatitis B virus (HBV) treatment failure relies on genotypic resistance testing. However, the results of such tests are not always consistent with treatment response. These discrepancies may be due to differences in resistance levels between isolates with the same genotypic resistance testing profiles. We explored this hypothesis by investigating six cases of entecavir treatment failure with an integrative strategy combining genotypic and phenotypic resistance testing, medical record review and therapeutic drug monitoring. Among isolates with genotypic reduced susceptibility to entecavir, one displayed a higher level of resistance to entecavir (mean fold change in entecavir IC of 1 508 ± 531 vs. 318 ± 53, p = 0.008). This isolate harbored a substitution (rt250L) at a position reported to be associated with resistance (rt250V). Reversion to wild-type amino acid at this position partially restored susceptibility to entecavir, confirming that the rt250L mutation was responsible for the high level of resistance to entecavir. This is the first description of entecavir treatment failure associated with selection of the rt250L mutation without other entecavir resistance mutations. One isolate with genotypic resistance to entecavir, harboring the rt173L mutation, displayed a lower level of resistance than the other, harboring the rt202G mutation (mean fold change of 323 ± 124 vs. 6 036 ± 2 100, p = 0.20). These results suggest that isolates harboring the rt250L mutations should be considered resistant to entecavir, whereas isolates harboring the rt173L mutations should be considered to display reduced susceptibility to entecavir. An integrative approach to antiviral drug resistance in HBV would provide a more accurate assessment of entecavir treatment failures and help to improve the accuracy of genotypic testing algorithms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.antiviral.2020.104869DOI Listing

Publication Analysis

Top Keywords

resistance entecavir
16
entecavir
13
resistance
12
treatment failure
12
genotypic resistance
12
resistance testing
12
entecavir treatment
12
susceptibility entecavir
12
level resistance
12
isolates genotypic
8

Similar Publications