98%
921
2 minutes
20
Heterozygous missense mutations in coatomer protein subunit α, COPA, cause a syndrome overlapping clinically with type I IFN-mediated disease due to gain-of-function in STING, a key adaptor of IFN signaling. Recently, increased levels of IFN-stimulated genes (ISGs) were described in COPA syndrome. However, the link between COPA mutations and IFN signaling is unknown. We observed elevated levels of ISGs and IFN-α in blood of symptomatic COPA patients. In vitro, both overexpression of mutant COPA and silencing of COPA induced STING-dependent IFN signaling. We detected an interaction between COPA and STING, and mutant COPA was associated with an accumulation of ER-resident STING at the Golgi. Given the known role of the coatomer protein complex I, we speculate that loss of COPA function leads to enhanced type I IFN signaling due to a failure of Golgi-to-ER STING retrieval. These data highlight the importance of the ER-Golgi axis in the control of autoinflammation and inform therapeutic strategies in COPA syndrome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596811 | PMC |
http://dx.doi.org/10.1084/jem.20200600 | DOI Listing |
Brain
September 2025
Central European Institute of Technology Masaryk University (CEITEC MU), 625 00 Brno, Czech Republic.
Mutations in the human ADAR gene encoding adenosine deaminase acting on RNA 1 (ADAR1) cause Aicardi-Goutières syndrome 6 (AGS6); a severe auto-inflammatory encephalopathy with aberrant interferon (IFN) induction. AdarΔ2-13 null mutant mouse embryos lacking ADAR1 protein die with high levels of IFN-stimulated gene (ISG) transcripts. In Adar Mavs double mutants also lacking the Mitochondrial antiviral signaling (MAVS) adaptor, the aberrant IFN induction is prevented.
View Article and Find Full Text PDFmBio
September 2025
The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA.
Unlabelled: Methicillin-resistant (MRSA) is a leading cause of endovascular infections, where interactions with endothelial cells play a critical role in pathogenesis. Gp05, a prophage-encoded protein, has previously been implicated in promoting antibiotic persistence by modulating MRSA cellular physiology and evading neutrophil-mediated killing. In this study, we investigated the role of Gp05 in MRSA-endothelial cell interactions, focusing on its impact on bacterial adhesion, invasion, cytotoxicity, and the host inflammatory response.
View Article and Find Full Text PDFFASEB J
September 2025
Immunology Program, Laboratory of Immunology and Cellular Stress, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.
Zika virus (ZIKV) is a mosquito-borne flavivirus causing a major epidemic in the Americas in 2015. Dendritic cells (DCs) are leukocytes with key antiviral functions, but their role in ZIKV infection remains under investigation. While most studies have focused on the monocyte-derived subtype of DCs, less is known about conventional dendritic cells (cDCs), essential for the orchestration of antiviral adaptive immunity.
View Article and Find Full Text PDFJ Integr Neurosci
August 2025
Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, 450052 Zhengzhou, Henan, China.
Background: Germinal matrix hemorrhage (GMH) is a common complication of premature infants with lifelong neurological consequences. Inflammation-mediated blood-brain barrier (BBB) disruption has been implicated as a main mechanism of secondary brain injury after GMH. The cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a crucial role in inflammation, yet its involvement in GMH pathophysiology remains unclear.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2025
Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China.
The innate immune system serves as the first line of defense against viral infections. Type I interferon (IFN-I) signaling, in particular, plays a crucial role in mediating antiviral immunity. Here, we identify Betrixaban (BT), a novel small-molecule compound that activates innate immune responses, leading to broad-spectrum antiviral effects.
View Article and Find Full Text PDF