Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Experimental murine models and human challenge studies of Typhi infection have suggested that the gut microbiome plays an important protective role against the development of typhoid fever. Anaerobic bacterial communities have been hypothesized to mediate colonization resistance against species by producing short-chain fatty acids, yet the composition and function of the intestinal microbiota in human patients with typhoid fever remain ill defined.

Methods: We prospectively collected fecal samples from 60 febrile patients admitted to Chittagong Medical College Hospital, Bangladesh, with typhoid fever or nontyphoidal febrile illness and from 36 healthy age-matched controls. The collected fecal samples were subjected to 16s rRNA sequencing followed by targeted metabolomics analysis.

Results: Patients with typhoid fever displayed compositional and functional disruption of the gut microbiota compared with patients with nontyphoidal febrile illness and healthy controls. Specifically, typhoid fever patients had lower microbiota richness and alpha diversity and a higher prevalence of potentially pathogenic bacterial taxa. In addition, a lower abundance of short-chain fatty acid-producing taxa was seen in typhoid fever patients. The differences between typhoid fever and nontyphoidal febrile illness could not be explained by a loss of colonization resistance after antibiotic treatment, as antibiotic exposure in both groups was similar.

Conclusions: his first report on the composition and function of the gut microbiota in patients with typhoid fever suggests that the restoration of these intestinal commensal microorganisms could be targeted using adjunctive, preventive, or therapeutic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371416PMC
http://dx.doi.org/10.1093/ofid/ofaa251DOI Listing

Publication Analysis

Top Keywords

typhoid fever
36
nontyphoidal febrile
16
febrile illness
16
gut microbiota
12
fever nontyphoidal
12
patients typhoid
12
typhoid
9
fever
9
compositional functional
8
functional disruption
8

Similar Publications

Salmonella enterica serovar Typhi, the etiological agent of Typhoid fever, remains a critical public health concern associated with high morbidity in many developing countries. The widespread emergence of multidrug-resistant (MDR) Salmonella Typhi strains against the fluoroquinolone group of antibiotics, particularly ciprofloxacin, poses a significant global therapeutic challenge with underlying resistance due to mutations in quinolone-resistance determining region (QRDR) of gyrA gene, encoding DNA gyrase subunit A (GyrA). In pursuit of alternative therapeutic candidates, the present study was designed to evaluate ciprofloxacin analogues against prevalent GyrA mutations (S83F, D87G, and D87N) to overcome fluoroquinolone resistance through machine learning (ML)-based approach.

View Article and Find Full Text PDF

Introduction: Vaccination against COVID-19 has generated a dramatic reduction in deaths and infections worldwide. However, there may be cross-reactivity with numerous biochemical and immunological markers. The Widal test for the detection of typhoid fever is an antigen-antibody test that can be affected by vaccination, causing errors in the results, so we determined the frequency of false positive results of the Widal test in adults vaccinated with Commirnaty (Pfizer -BioNtech) and BBIBP-CorV (Sinopharm) vaccines.

View Article and Find Full Text PDF

Introduction: Typhoid fever, caused by Salmonella Typhi and Paratyphi, remains a sig-nificant public health concern, particularly in developing countries. The emergence of antimicrobial resistance, including resistance to first-line drugs, fluoroquinolones, and the development of re-sistance to ceftriaxone, poses a significant threat to effective treatment.

Methods: This study investigated extended-spectrum β-lactamase (ESBL)-producing Salmonella Typhi isolates from blood samples of patients with suspected typhoid fever at a tertiary care hospital in Western Rajasthan, India, between April 2022 and May 2024.

View Article and Find Full Text PDF

Enteric (typhoid and paratyphoid) fever.

Lancet

September 2025

Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool. Electronic address:

Enteric fever, caused by the human-restricted bacteria Salmonella enterica serovar Typhi (typhoid) and Salmonella enterica serovar Paratyphi A, B, and C (paratyphoid), affects persons residing in, or travelling from, areas lacking safe water, sanitation, and hygiene infrastructure. Transmission is by the faecal-oral route. A gradual fever onset over 3-7 days with malaise, headache, and myalgia is typical.

View Article and Find Full Text PDF

Background Dengue fever significantly burdens healthcare systems, particularly in resource-limited settings such as Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan. Mufti Mehmood Memorial Teaching Hospital, the designated Dengue Isolation Unit in the region, continues to receive a steady influx of patients. This study analyzed the epidemiological profile of dengue cases admitted to the hospital to support public health planning and guide resource allocation.

View Article and Find Full Text PDF