A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Short-and long-term administration of imeglimin counters cardiorenal dysfunction in a rat model of metabolic syndrome. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Imeglimin, a glucose-lowering agent targeting mitochondrial bioenergetics, decreases reactive oxygen species (ROS) overproduction and improves glucose homeostasis. We investigated whether this is associated with protective effects on metabolic syndrome-related left ventricular (LV) and vascular dysfunctions.

Methods: We used Zucker rats to assess the effects on LV function, LV tissue perfusion, LV oxidative stress and vascular function induced by imeglimin administered orally for 9 or 90 days at a dose of 150 mg/kg twice daily.

Results: Compared to untreated animals, 9- and 90-day imeglimin treatment decreased LV end-diastolic pressure and LV end-diastolic pressure-volume relation, increased LV tissue perfusion and decreased LV ROS production. Simultaneously, imeglimin restored acetylcholine-mediated coronary relaxation and mesenteric flow-mediated dilation. One hour after imeglimin administration, when glucose plasma levels were not yet modified, imeglimin reduced LV mitochondrial ROS production and improved LV function. Ninety-day imeglimin treatment reduced related LV and kidney fibrosis and improved kidney function.

Conclusion: In a rat model, mimicking Human metabolic syndrome, imeglimin immediately countered metabolic syndrome-related cardiac diastolic and vascular dysfunction by reducing oxidative stress/increased NO bioavailability and improving myocardial perfusion and after 90-day treatment myocardial and kidney structure, effects that are, at least in part, independent from glucose control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375119PMC
http://dx.doi.org/10.1002/edm2.128DOI Listing

Publication Analysis

Top Keywords

imeglimin
9
rat model
8
metabolic syndrome
8
metabolic syndrome-related
8
tissue perfusion
8
imeglimin treatment
8
ros production
8
short-and long-term
4
long-term administration
4
administration imeglimin
4

Similar Publications