98%
921
2 minutes
20
Geometrical dimensionality plays a fundamentally important role in the topological effects arising in discrete lattices. Although direct experiments are limited by three spatial dimensions, the research topic of synthetic dimensions implemented by the frequency degree of freedom in photonics is rapidly advancing. The manipulation of light in these artificial lattices is typically realized through electro-optic modulation; yet, their operating bandwidth imposes practical constraints on the range of interactions between different frequency components. Here we propose and experimentally realize all-optical synthetic dimensions involving specially tailored simultaneous short- and long-range interactions between discrete spectral lines mediated by frequency conversion in a nonlinear waveguide. We realize triangular chiral-tube lattices in three-dimensional space and explore their four-dimensional generalization. We implement a synthetic gauge field with nonzero magnetic flux and observe the associated multidimensional dynamics of frequency combs, all within one physical spatial port. We anticipate that our method will provide a new means for the fundamental study of high-dimensional physics and act as an important step towards using topological effects in optical devices operating in the time and frequency domains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371864 | PMC |
http://dx.doi.org/10.1038/s41377-020-0299-7 | DOI Listing |
Light Sci Appl
July 2020
Nonlinear Physics Centre, Research School of Physics, The Australian National University, Canberra, ACT 2601 Australia.
Geometrical dimensionality plays a fundamentally important role in the topological effects arising in discrete lattices. Although direct experiments are limited by three spatial dimensions, the research topic of synthetic dimensions implemented by the frequency degree of freedom in photonics is rapidly advancing. The manipulation of light in these artificial lattices is typically realized through electro-optic modulation; yet, their operating bandwidth imposes practical constraints on the range of interactions between different frequency components.
View Article and Find Full Text PDFACS Nano
March 2020
CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, People's Republic of China.
Biomaterials in nature often exhibit hierarchical chiral structures with an intriguing mechanism involving hierarchical chirality transfer from molecular to supramolecular and the nano- or microscale level. To mimic the cross-level chirality transfer, we present here one kind of host-guest complex system built of β-cyclodextrin (β-CD), sodium dodecyl sulfate (SDS), and fluorescent dyes, which show multilevel chirality, including molecular chirality of β-CD, induced supramolecular chirality of β-CD/SDS host-guest complexes, a chiral lattice self-assembled nanosheet, mesoscopic chirality of an assembled helical tube, induced chirality of a dye-doped chiral tube. The hierarchical chirality involved a chiral lattice self-assembly process, which can be identified by small-angle X-ray scattering, optical studies, circular dichroism, and circularly polarized luminescence spectral measurements.
View Article and Find Full Text PDF