A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Tooth segmentation and gingival tissue deformation framework for 3D orthodontic treatment planning and evaluating. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, we propose an integrated tooth segmentation and gingival tissue deformation simulation framework used to design and evaluate the orthodontic treatment plan especially with invisible aligners. Firstly, the bio-characteristics information of the digital impression is analyzed quantitatively and demonstrated visually. With the derived information, the transitional regions of tooth-tooth and tooth-gingiva are extracted as the solution domain of the segmentation boundaries. Then, a boundary detection approach is proposed, which is used for the tooth segmentation and region division of the digital impression. After tooth segmentation, we propose the deformation simulation framework driven by energy function based on the biological deformation properties of gingival tissues. The correctness and availability of the proposed segmentation and gingival tissue deformation simulation framework are demonstrated with typical cases and qualitative analysis. Experimental results show that segmentation boundaries calculated by the proposed method are accurate, and local details of the digital impression under study are preserved well during deformation simulation. Qualitative analysis results of the gingival tissues' surface area and volume variations indicate that the proposed gingival tissue deformation simulation framework is consistent with the clinical gingival tissue deformation characteristics, and it can be used to predict the rationality of the treatment plan from both visual inspection and numerical simulation. The proposed tooth segmentation and gingival tissue deformation simulation framework is shown to be effective and has good practicability, but accurate quantitative analysis based on clinical results is still an open problem in this study. Combined with tooth rearrangement steps, it can be used to design the orthodontic treatment plan, and to output the data for production of invisible aligners. Graphical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-020-02230-9DOI Listing

Publication Analysis

Top Keywords

gingival tissue
24
tissue deformation
24
deformation simulation
24
tooth segmentation
20
simulation framework
20
segmentation gingival
16
orthodontic treatment
12
treatment plan
12
digital impression
12
deformation
9

Similar Publications