Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This research developed a more efficient integrated model (IM) based on combining the Nash-Sutcliffe efficiency coefficient (NSEC) and individual data mining (DM) algorithms for the spatial mapping of dust provenance in the Hamoun-e-Hirmand Basin, southeastern Iran. This region experiences severe wind erosion and includes the Sistan plain which is one of the most PM-polluted regions in the world. Due to a prolonged drought over the last two decades, the frequency of dust storms in the study area is increasing remarkably. Herein, 14 factors controlling dust emissions (FCDEs) including soil characteristics, climatic variables, digital elevation map, normalized difference vegetation index, land use and geology were mapped. Correlation and collinearity among the FCDEs were examined by the Pearson test, tolerance coefficient (TC) and variance inflation factor (VIF), with the results suggesting a lack of collinearity between FCDEs. A tree-based genetic algorithm was applied to prioritize and quantify the importance weights of the FCDEs. Thirteen individual data mining models were applied for mapping dust provenance. The model performance was assessed using root mean square error, mean absolute error and NSEC. Based on clustering analysis, the 13 DM models were grouped into five clusters and then the cluster with the highest NSEC values used in an integrated modelling process. Based on the results, the IM (NSEC = 93%) outperformed the individual DM models (the NSEC values range between 51 and 92%). Using the IM, 11, 5, 7 and 77% of the total study area were classified into low, moderate, high and very high susceptibility classes for dust provenance, respectively. Overall, the results illustrate the benefits of an IM for mapping spatial variation in the susceptibility of catchment areas to act as dust sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-020-10168-6 | DOI Listing |