A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Evaluation of an Activity Tracker to Detect Seizures Using Machine Learning. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Currently, the tracking of seizures is highly subjective, dependent on qualitative information provided by the patient and family instead of quantifiable seizure data. Usage of a seizure detection device to potentially detect seizure events in a population of epilepsy patients has been previously done. Therefore, we chose the Fitbit Charge 2 smart watch to determine if it could detect seizure events in patients when compared to continuous electroencephalographic (EEG) monitoring for those admitted to an epilepsy monitoring unit. A total of 40 patients were enrolled in the study that met the criteria between 2015 and 2016. All seizure types were recorded. Twelve patients had a total of 53 epileptic seizures. The patient-aggregated receiver operating characteristic curve had an area under the curve of 0.58 [0.56, 0.60], indicating that the neural network models were generally able to detect seizure events at an above-chance level. However, the overall low specificity implied a false alarm rate that would likely make the model unsuitable in practice. Overall, the use of the Fitbit Charge 2 activity tracker does not appear well suited in its current form to detect epileptic seizures in patients with seizure activity when compared to data recorded from the continuous EEG.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0883073820937515DOI Listing

Publication Analysis

Top Keywords

detect seizure
12
seizure events
12
activity tracker
8
fitbit charge
8
epileptic seizures
8
seizure
7
detect
5
patients
5
evaluation activity
4
tracker detect
4

Similar Publications