Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We investigated if subsoil constraints to root development imposed by coarse sand were affected by drought and biochar application over two seasons. Biochar was applied to the subsoil of pots at 20-50 cm depth in concentrations of 0%, 1%, 2%, and 3% (B0, B1, B2, and B3). Maize was grown in the same pots 1 week and 12 months after biochar application. The maize plants were fully irrigated until flowering; thereafter, half of them were subjected to drought. A new method for observing root growth dynamics and root length density , the Rootsnap sensor system, was developed. The sensors were installed at 50 cm depth just below the layer of biochar-amended subsoil. Using data from a smaller experiment with grass, the calculated root length densities from the sensors were compared with data from scanning of manually washed roots. In year 2, we investigated the effect of aged biochar on root growth using only the root wash and scanning method. The Rootsnap sensor revealed that the arrival time of the first root in B3 at the 50 cm depth averaged 47 days after planting, which was significantly earlier than in B0, by 9 days. The tendency for faster root proliferation in biochar-amended subsoil indicates that biochar reduced subsoil mechanical impedance and allowed roots to gain faster access to deep soil layers. A linear regression comparing root length density obtained from the Rootsnap sensor with the scanning method yielded an of 0.50. Our analysis using the scanning method further showed that under drought stress, maize roots responded with reduced root diameter and increased root length density at 50-70 cm depth in the first and second year, respectively. The trend under full irrigation was less clear, with significant decrease in root length density for B1 and B2 in year 2. Overall, reduction in subsoil mechanical impedance observed as early arrival of roots to the subsoil may prevent or delay the onset of drought and reduce leaching of nutrients in biochar-amended soil with positive implications for agricultural productivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7330118PMC
http://dx.doi.org/10.3389/fpls.2020.00949DOI Listing

Publication Analysis

Top Keywords

root length
20
rootsnap sensor
16
length density
16
root
13
root growth
12
scanning method
12
biochar root
8
growth dynamics
8
biochar application
8
density rootsnap
8

Similar Publications

Boron toxicity and salinity are major abiotic stress factors that cause significant yield losses, particularly in arid and semi-arid regions. Hyperaccumulator plants, such as Puccinella distans (Jacq.) Parl.

View Article and Find Full Text PDF

Purpose: This study evaluated how the formation of various types of precipitates affects the accuracy of electronic apex locators in determining the working length.

Methods: Two hundred and forty extracted human maxillary incisors were selected. A total of eight groups were used: four groups (n = 30) for the application of different irrigants; saline, sodium hypochlorite (5.

View Article and Find Full Text PDF

Introduction: To evaluate how stepwise enlargement in the mesial root canals of mandibular first molars affect shaping outcomes and irrigant dynamics.

Methods: The shaping ability and irrigant flow patterns in mesial canals of mandibular first molars enlarged with ProTaper Next instruments (25/.06v, 30/.

View Article and Find Full Text PDF

The Mediterranean Sea is home to a wide variety of fish species that exhibit carnivorous behavior, particularly during the juvenile to pre-adult stages. This study aimed to compare the tongue morphology of four Mediterranean carnivorous fish species: the dusky grouper fish (Epinephelus marginatus), John Dory fish (Zeus faber), squirrelfish (Holocentrus spp.), and red lionfish (Pterois volitans).

View Article and Find Full Text PDF

The present study aimed to explore the potential of Indian mustard ( L.) for phytoremediation of soil contaminated with ciprofloxacin. The antibiotic ciprofloxacin was selected due to its rapidly increasing presence in soil.

View Article and Find Full Text PDF