Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

X-ray absorption spectroscopy (XAS) is a widely used technique to probe the local environment around specific atomic species. Applied to samples under extreme pressure and temperature conditions, XAS is sensitive to phase transitions, including melting, and allows gathering insights on compositional variations and electronic changes occurring during such transitions. These characteristics can be exploited for studies of prime interest in geophysics and fundamental high-pressure physics. Here, we investigated the melting curve and the eutectic composition of four geophysically relevant iron binary systems: Fe-C, Fe-O, Fe-S and Fe-Si. Our results show that all these systems present the same spectroscopic signatures upon melting, common to those observed for other pure late 3d transition metals. The presented melting criterion seems to be general for late 3d metals bearing systems. Additionally, we demonstrate the suitability of XAS to extract melt compositional information in situ, such as the evolution of the concentration of light elements with increasing temperature. Diagnostics presented in this work can be applied to studies over an even larger pressure range exploiting the upgraded synchrotron machines, and directly transferred to time-resolved extreme condition studies using dynamic compression (ns) or fast laser heating (ms).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363681PMC
http://dx.doi.org/10.1038/s41598-020-68244-3DOI Listing

Publication Analysis

Top Keywords

x-ray absorption
8
absorption spectroscopy
8
fe-c fe-o
8
fe-o fe-s
8
fe-s fe-si
8
fe-si systems
8
melting
5
melting properties
4
properties x-ray
4
spectroscopy common
4

Similar Publications

This study introduces a back filter installed at the end of the exhaust pipe of city buses. The impact of the metal type used in its construction on the absorption of suspended particles and the reduction of sulfides in diesel engine exhaust gases is investigated. The back filter is constructed from three metals: copper, zinc, and nickel.

View Article and Find Full Text PDF

A CoO/AgMoO/CeOternary nanocomposites photocatalyst was successfully synthesized through a straightforward ethanol-assisted chemical method. Comprehensive characterization of its structural and optical properties was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) analysis. XRD analysis confirmed the presence of CoO, AgMoO and CeO in the ternary composite sample.

View Article and Find Full Text PDF

Background: Hounsfield units (HU) on computed tomography (CT) are strongly correlated with bone mineral density (BMD) and may aid in osteoporosis screening. However, there is no standardized method for assessing bone density in displaced femoral head fractures. This study aimed to measure HU values in the femoral head using preoperative post-fracture CT images of patients with intertrochanteric femoral fractures and investigate whether it correlated with BMD measured by dual-energy X-ray absorptiometry (DXA).

View Article and Find Full Text PDF

Comparison of Vascular Injury From Intravascular Lithotripsy, Cutting, or Ultra-High-Pressure Balloons During Coronary Calcium Modification.

JACC Cardiovasc Interv

September 2025

CVPath Institute, Gaithersburg, Maryland, USA; University of Maryland, School of Medicine, Baltimore, Maryland, USA. Electronic address:

Background: Effective modification of heavily calcified coronary lesions is critical for successful percutaneous coronary intervention (PCI). Intravascular lithotripsy (IVL), cutting balloons (CBs), and ultra-high-pressure balloons (UHBs) are used commonly, yet data comparing their effectiveness and safety for calcified lesion modification remain unavailable.

Objectives: The aim of this study was to compare the effects of IVL, a CB, and a UHB on calcified coronary lesions in human cadaveric arteries, focusing on calcium fracture formation and vascular injury.

View Article and Find Full Text PDF

This study develops an integrated X-ray absorption spectroscopy (XAS) photoemission electron microscopy (PEEM) platform on beamline BL09U at the Shanghai Synchrotron Radiation Facility (SSRF), enabling nanoscale characterization of complex materials through energy-resolved imaging and local-area XAS. By using the wide range of energy tunability, full access to different polarizations and PEEM's surface sensitivity, we have established a gap-monochromator control system under the EPICS framework to synchronize the elliptically polarized undulator (EPU) gap and monochromator energy dynamically, optimizing photon flux stability for absorption fine structure analysis. Combining X-ray magnetic circular dichroism (XMCD) and X-ray magnetic linear dichroism (XMLD) with PEEM and local-area XAS, this platform achieves concurrent mapping of electronic structures and magnetic domains in ferromagnetic nano-patterns, as demonstrated through our studies of NiFe Permalloy using this system.

View Article and Find Full Text PDF