Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cutaneous squamous cell carcinoma (CSCC) is a malignant proliferation of cutaneous epithelium that has been observed to have an alarming rise in incidence. Numerous studies have demonstrated microRNAs (miRNAs or miRs) as important biomarkers in the diagnosis, prognosis, and treatment of CSCC. This study aims to investigate the effects of miR-203 on the behaviors of CSCC cells and possible mechanisms associated with protein regulator of cytokinesis-1 (PRC1) and Wnt/β-catenin signaling pathway. PRC1 was suggested as a target of miR-203 in squamous cell carcinoma cell line 1 (SCL-1) cells by dual-luciferase reporter gene assay. Based on the immunohistochemical staining and qRT-PCR, PRC1 was abundantly expressed while miR-203 was poorly expressed in CSCC tissues. miR-203 mimic or inhibitor was transfected into SCL-1 cells to upregulate or downregulate its expression. Upregulation of miR-203 downregulated PRC1 expression to block the Wnt/β-catenin signaling pathway. By conducting 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), scratch test, and Transwell and flow cytometric analyses, miR-203 was witnessed to restrain SCL-1 cell proliferation, migration, and invasion while accelerating their apoptosis. The rescue experiments addressed that inhibition of the Wnt/β-catenin signaling pathway conferred the anti-tumor effect of miR-203. These results establish a tumor-suppressive role for miR-203 in CSCC cell line SCL-1. Hence, miR-203 has promising potential as a therapeutic target for CSCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7358222PMC
http://dx.doi.org/10.1016/j.omtn.2020.04.014DOI Listing

Publication Analysis

Top Keywords

cell scl-1
12
wnt/β-catenin signaling
12
signaling pathway
12
mir-203
9
accelerating apoptosis
8
cscc cell
8
squamous cell
8
cell carcinoma
8
scl-1 cells
8
cscc
7

Similar Publications

Although triple-negative breast cancers are still challenging to treat, the development of novel neoadjuvant chemotherapy combined with immune checkpoint antibodies is promising. Our group developed the small compound-based anti-PD-1/PD-L1 inhibitor SCL-1 and reported its potent anti-tumor effects on various syngeneic mouse tumors. We herein investigated the efficacy of SCL-1 using an in vivo humanized NOG mouse system.

View Article and Find Full Text PDF

Background: Terpinen-4-ol (T4O), a key constituent of tea tree essential oil and various aromatic plants, has shown promising antiproliferative and pro-apoptotic effects in melanoma and other cancer types. However, its efficacy against cutaneous squamous cell carcinoma (cSCC) remains unclear. Thus, in this study, we investigated the and effects of T4O on cSCC cell lines and preliminarily explored its impacting pathways.

View Article and Find Full Text PDF

Background/aim: Immune checkpoint blockade has achieved great success as a targeted immunotherapy for solid cancers. However, small molecules that inhibit programmed death 1/programmed death ligand 1 (PD-1/PD-L1) binding are still being developed and have several advantages, such as high bioavailability. Previously, we reported a novel PD-1/PD-L1-inhibiting small compound, SCL-1, which showed potent antitumor effects on PD-L1 tumors.

View Article and Find Full Text PDF

Cutaneous squamous cell carcinoma (cSCC) is a common type of cutaneous cancer globally. M2 macrophage-derived exosomes (M2 exosomes) facilitate the development of cancer. Ferroptosis, a newly uncovered form of cell death, is linked to cancer progression.

View Article and Find Full Text PDF

Actinic keratosis (AK) is characterized by a reddish or occasionally skin-toned rough patch on sun-damaged skin, and it is regarded as a precursor to squamous cell carcinoma (SCC). Photodynamic therapy (PDT), utilizing 5-aminolevulinic acid (ALA) along with red light, is a recognized treatment option for AK that is limited by the penetration depth of light and the distribution of the photosensitizer into the skin. Cold atmospheric plasma (CAP) is a partially ionized gas with permeability-enhancing and anti-cancer properties.

View Article and Find Full Text PDF