A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Predicting differential improvements in annual pollutant concentrations and exposures for regulatory policy assessment. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Over the past decade, researchers and policy-makers have become increasingly interested in regulatory and policy interventions to reduce air pollution concentrations and improve human health. Studies have typically relied on relatively sparse environmental monitoring data that lack the spatial resolution to assess small-area improvements in air quality and health. Few studies have integrated multiple types of measures of an air pollutant into one single modeling framework that combines spatially- and temporally-rich monitoring data. In this paper, we investigated the differential effects of California emissions reduction plan on reducing air pollution between those living in the goods movement corridors (GMC) that are within 500 m of major highways that serve as truck routes to those farther away or adjacent to routes that prohibit trucks. A mixed effects Deletion/Substitution/Addition (D/S/A) machine learning algorithm was developed to model annual pollutant concentrations of nitrogen dioxide (NO) by taking repeated measures into consideration and by integrating multiple types of NO measurements, including those through government regulatory and research-oriented saturation monitoring into a single modeling framework. Difference-in-difference analysis was conducted to identify whether those living in GMC demonstrated statistically larger reductions in air pollution exposure. The mixed effects D/S/A machine learning modeling result indicated that GMC had 2 ppb greater reductions in NO concentrations from pre- to post-policy period than far away areas. The difference-in-difference analysis demonstrated that the subjects living in GMC experienced statistically significant greater reductions in NO exposure than those living in the far away areas. This study contributes to scientific knowledge by providing empirical evidence that improvements in air quality via the emissions reductions plan policies impacted traffic-related air pollutant concentrations and associated exposures most among low-income Californians with chronic conditions living in GMC. The identified differences in pollutant reductions across different location domains may be applicable to other states or other countries if similar policies are enacted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2020.105942DOI Listing

Publication Analysis

Top Keywords

pollutant concentrations
12
air pollution
12
living gmc
12
annual pollutant
8
regulatory policy
8
health studies
8
monitoring data
8
improvements air
8
air quality
8
multiple types
8

Similar Publications