A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A system architecture for parallel analysis of flux-balanced metabolic pathways. | LitMetric

A system architecture for parallel analysis of flux-balanced metabolic pathways.

Comput Biol Chem

Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran. Electronic address:

Published: October 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Elementary flux mode (EFM) analysis is a well-studied method in constraint-based modeling of metabolic networks. In EFM analysis, a network is decomposed into minimal functional pathways based on the assumption of balanced metabolic fluxes. In this paper, a system architecture is proposed that approximately models the functionality of metabolic networks. The AND/OR graph model is used to represent the metabolic network and each processing element in the system emulates the functionality of a metabolite. The system is implemented on a graphics processing unit (GPU) as the hardware platform using CUDA environment. The proposed architecture takes advantage of the inherent parallelism in the network structure in terms of both pathway and metabolite traversal. The function of each element is defined such that it can find flux-balanced pathways. Pathways in both small and large metabolic networks are applied to the proposed architecture and the results are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2020.107309DOI Listing

Publication Analysis

Top Keywords

metabolic networks
12
system architecture
8
efm analysis
8
proposed architecture
8
metabolic
6
system
4
architecture parallel
4
parallel analysis
4
analysis flux-balanced
4
flux-balanced metabolic
4

Similar Publications