A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Redox-responsive functionalized hydrogel marble for the generation of cellular spheroids. | LitMetric

Redox-responsive functionalized hydrogel marble for the generation of cellular spheroids.

J Biosci Bioeng

Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan; Center for Future Chemistry, Kyushu University, Fukuoka 819-0395, Japan. Electronic address:

Published: October 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Liquid marbles (LMs) have recently shown a great promise as microbioreactors to construct self-supported aqueous compartments for chemical and biological reactions. However, the evaporation of the inner aqueous liquid core has limited their application, especially in studying cellular functions. Hydrogels are promising scaffolds that provide a spatial environment suitable for three-dimensional cell culture. Here, we describe the fabrication of redox-responsive hydrogel marbles (HMs) as a three-dimensional cell culture platform. The HMs are prepared by introducing an aqueous mixture of a tetra-thiolated polyethylene glycol (PEG) derivative, thiolated gelatin (Gela-SH), horseradish peroxidase, a small phenolic compound, and human hepatocellular carcinoma cells (HepG2) to the inner aqueous phase of LMs. Eventually, HepG2 cells are encapsulated in the HMs then immersed in culture media, where they proliferate and form cellular spheroids. Experimental results show that the Gela-SH concentration strongly influences the physicochemical and microstructure properties of the HMs. After 6 days in culture, the spheroids were recovered from the HMs by degrading the scaffold, and examination showed that they had reached up to about 180 μm in diameter depending on the Gela-SH concentration, compared with 60 μm in conventional HMs without Gela-SH. After long-term culture (over 12 days), the liver-specific functions (secretion of albumin and urea) and DNA contents of the spheroids cultured in the HMs were elevated compared with those cultured in LMs. These results suggest that the developed HMs can be useful in designing a variety of microbioreactors for tissue engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2020.05.010DOI Listing

Publication Analysis

Top Keywords

cellular spheroids
8
inner aqueous
8
three-dimensional cell
8
cell culture
8
hms
8
gela-sh concentration
8
culture
5
redox-responsive functionalized
4
functionalized hydrogel
4
hydrogel marble
4

Similar Publications