A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Cellulose mini-membranes modified with TiO for separation, determination, and speciation of arsenates and selenites. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sorptive and selective mini-membranes based on TiO directly synthesized onto cellulose filters (TiO@cellulose) have been developed. The in situ synthesis of TiO@cellulose applied is simple and economically advantageous. The obtained membranes can be useful for (1) separating arsenic(V) and selenium(IV) from other ions and organic matter, (2) speciation of arsenic and selenium, and (3) determining ulratraces of these ions in water samples. The membranes exhibit good stability and high maximum adsorption capacities for Se(IV) (71 mg g) and As(V) (41 mg g). A monolayer chemical adsorption of analytes on the membranes was confirmed. The structure of membranes was examined with scanning electron microscopy, x-ray diffractometry, and micro energy-dispersive x-ray fluorescence spectrometry (μ-EDXRF). The membranes were characterized by homogenous distribution of TiO onto cellulose. The TiO@cellulose was used as a new sorbent in micro-solid phase extraction for determination of Se(IV) and As(V) by EDXRF. Using direct analysis of mini-membranes after sorption of analytes avoids the elution step. Thus, the proposed procedure is an attractive and solvent-free option for quantitative monitoring of Se(IV) and As(V) in different materials. Both analytes were quantitatively and simultaneously separated/determined from samples at pH 2 with very good recovery (close to 100%), precision (4.5%), and detection limits (0.4 ng mL Se and 0.25 ng mL As). TiO@cellulose membranes were applied to water analysis. Graphical-abstract Effective method for determination of ultra trace arsenates and selenites using cellulose-based sorbent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7338822PMC
http://dx.doi.org/10.1007/s00604-020-04387-4DOI Listing

Publication Analysis

Top Keywords

arsenates selenites
8
seiv asv
8
membranes
5
cellulose mini-membranes
4
mini-membranes modified
4
modified tio
4
tio separation
4
separation determination
4
determination speciation
4
speciation arsenates
4

Similar Publications