Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
There is an urgent need for next-generation smoke research and forecasting (SRF) systems to meet the challenges of the growing air quality, health, and safety concerns associated with wildland fire emissions. This review paper presents simulations and experiments of hypothetical prescribed burns with a suite of selected fire behavior and smoke models and identifies major issues for model improvement and the most critical observational needs. The results are used to understand the new and improved capability required for the next-generation SRF systems and to support the design of the Fire and Smoke Model Evaluation Experiment (FASMEE) and other field campaigns. The next-generation SRF systems should have more coupling of fire, smoke, and atmospheric processes to better simulate and forecast vertical smoke distributions and multiple sub-plumes, dynamical and high-resolution fire processes, and local and regional smoke chemistry during day and night. The development of the coupling capability requires comprehensive and spatially and temporally integrated measurements across the various disciplines to characterize flame and energy structure (e.g., individual cells, vertical heat profile and the height of well mixing flaming gases), smoke structure (vertical distributions and multiple sub-plumes), ambient air processes (smoke eddy, entrainment and radiative effects of smoke aerosols), fire emissions (for different fuel types and combustion conditions from flaming to residual smoldering), as well as night-time processes (smoke drainage and super-fog formation).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336523 | PMC |
http://dx.doi.org/10.1071/wf18204 | DOI Listing |