Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Advancing age is a major risk factor for developing heart disease, and the biological processes contributing to aging are currently under intense investigation. Autophagy is an important cellular quality control mechanism that is reduced in tissues with age but the molecular mechanisms underlying the age-associated defects in autophagy remain poorly characterized. Here, we have investigated how the autophagic process is altered in aged mouse hearts. We report that autophagic activity is reduced in aged hearts due to a reduction in autophagosome formation. Gene expression profile analysis to evaluate changes in autophagy regulators uncovered a reduction in Atg9b transcript and protein levels. Atg9 proteins are critical in delivering membrane to the growing autophagosome, and siRNA knockdown of Atg9b in cells confirmed a reduction in autophagosome formation. Autophagy is also the main pathway involved in eliminating dysfunctional mitochondria via a process known as mitophagy. The E3 ubiquitin ligase Parkin plays a key role in labeling mitochondria for mitophagy. We also found increased levels of Parkin-positive mitochondria in the aged hearts, an indication that they have been labeled for mitophagy. In contrast, Nrf1, a major transcriptional regulator of mitochondrial biogenesis, was significantly reduced in aged hearts. Additionally, our data showed reduced Drp1-mediated mitochondrial fission and formation of enlarged mitochondria in the aged heart. Overall, our findings suggest that cardiac aging is associated with reduced autophagosome number, decreased mitochondrial turnover, and formation of megamitochondria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431832PMC
http://dx.doi.org/10.1111/acel.13187DOI Listing

Publication Analysis

Top Keywords

autophagosome formation
12
aged hearts
12
aging associated
8
enlarged mitochondria
8
reduced aged
8
reduction autophagosome
8
mitochondria aged
8
autophagosome
5
formation
5
mitochondria
5

Similar Publications

Kleptoplasty: Solar-powered sea slugs house stolen plastids in kleptosomes.

Curr Biol

September 2025

Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany; Research Training Group 2984 Evolutionary Genomics: Consequences of Biodiverse Reproductive Systems (EvoReSt) and IMPRS Molecular Biology, Department

A new study shows that Sacoglossan sea slugs sequester stolen plastids in arrested phagosomes called 'kleptosomes', redefining how these organelles are compartmentalized and regulated in animal cells. Under normal conditions, the plastids are supported and maintained, but starvation causes their degradation, supporting a potential nutritional role.

View Article and Find Full Text PDF

Ilimaquinone-induced lipophagy diminishes lipid accumulation via AMPK activation.

BMB Rep

September 2025

Research Institute for Korean Medicine, Pusan National University, Yangsan 50612; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 05612, Korea.

Lipid metabolism plays an important role in aging and longevity, and lipophagy-a specialized form of autophagy that targets lipid vesicles-regulates lipid homeostasis and alleviates metabolic diseases such as metabolic dysfunctionassociated steatotic liver disease (MASLD). Ilimaquinone (IQ), a sesquiterpene extracted from the sea, is well-known for its various biological effects; however, its effects on lipid metabolism and longevity have not yet been elucidated. In this study, IQ acted in a dose-dependent manner, extending the lifespan of Caenorhabditis elegans (C.

View Article and Find Full Text PDF

Effect of Schinus molle L. essential oil on Leishmania amazonensis: targeting proliferation, mitochondrial potential and autophagy.

J Ethnopharmacol

September 2025

Laboratório de Parasitos e Vetores, Departamento de Ciências Farmacêuticas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, Brazil. Electronic address:

Ethnopharmacological Relevance: Schinus genus plants have a long history of use in traditional medicine, particularly in South America. The ethnopharmacological applications of Schinus species include antiseptic, antiplasmodial, antimalarial and antileishmanial properties.

Aim Of The Study: In the present work, we investigated the action of essential oil (EO) against cutaneous leishmaniasis causing agent Leishmania amazonensis in promastigote and amastigote forms as well as cytotoxicity against host cells.

View Article and Find Full Text PDF

Autophagy Modulation by Antidepressants: Mechanisms and Implications.

Neurochem Res

September 2025

Department of Psychiatry, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.

Depression is a significant global health concern that extends beyond mere neurotransmitter imbalances, as the significance of autophagy in cellular recycling is increasingly recognized as pivotal in its pathogenesis and therapeutic intervention. This review thoroughly integrates the insights on how various antidepressants, such as SSRIs, SNRIs, and TCAs, confer therapeutic efficacy through modulation of autophagy pathways. We present evidence indicating that these pharmacological agents can augment autophagic flux, facilitate the clearance of neurotoxic protein aggregates, mitigate neuroinflammation, and enhance mitochondrial functionality, all of which represent critical elements of depressive pathology.

View Article and Find Full Text PDF

This study aimed to investigate the effects of caffeoylquinic acids from Erigeron breviscapus(EBCQA) on cognitive impairment and mitochondrial dysfunction in Alzheimer's disease(AD), and to explore its underlying mechanisms. The impacts of EBCQA on paralysis, β-amyloid(Aβ) oligomerization, and mRNA expression of mitophagy-related genes [PTEN-induced putative kinase 1(PINK1) homolog-encoding gene pink-1, Parkin homolog-encoding gene pdr-1, Bcl-2 interacting coiled-coil protein 1(Beclin 1) homolog-encoding gene bec-1, microtubule-associated protein 1 light chain 3(LC3) homolog-encoding gene lgg-1, autophagic adapter protein 62(p62) homolog-encoding gene sqst-1] were examined in the AD Caenorhabditis elegans CL4176 model, along with mitochondrial functions including adenosine triphosphate(ATP) content, enzyme activities of mitochondrial respiratory chain complexes Ⅰ,Ⅲ, and Ⅳ, and mitochondrial membrane potential. Additionally, the effects of EBCQA on the green fluorescent protein(GFP)/red fluorescent protein from Discosoma sp.

View Article and Find Full Text PDF