A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

In-Lipid Structure of Pressure-Sensitive Domains Hints Mechanosensitive Channel Functional Diversity. | LitMetric

In-Lipid Structure of Pressure-Sensitive Domains Hints Mechanosensitive Channel Functional Diversity.

Biophys J

Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, U

Published: July 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis has been used as a structural model for rationalizing functional observations in multiple MscL orthologs. Although these orthologs adopt similar structural architectures, they reportedly present significant functional differences. Subtle structural discrepancies on mechanosensitive channel nanopockets are known to affect mechanical gating and may be linked to large variability in tension sensitivity among these membrane channels. Here, we modify the nanopocket regions of MscL from Escherichia coli and M. tuberculosis and employ PELDOR/DEER distance and 3pESEEM deuterium accessibility measurements to interrogate channel structure within lipids, in which both channels adopt a closed conformation. Significant in-lipid structural differences between the two constructs suggest a more compact E. coli MscL at the membrane inner-leaflet, as a consequence of a rotated TM2 helix. Observed differences within lipids could explain E. coli MscL's higher tension sensitivity and should be taken into account in extrapolated models used for MscL gating rationalization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376121PMC
http://dx.doi.org/10.1016/j.bpj.2020.06.012DOI Listing

Publication Analysis

Top Keywords

mechanosensitive channel
12
tension sensitivity
8
mscl
5
in-lipid structure
4
structure pressure-sensitive
4
pressure-sensitive domains
4
domains hints
4
hints mechanosensitive
4
channel
4
channel functional
4

Similar Publications