Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hematopoietic stem and progenitor cells (HSPCs) develop in distinct waves at various anatomical sites during embryonic development. The in vitro differentiation of human pluripotent stem cells (hPSCs) recapitulates some of these processes; however, it has proven difficult to generate functional hematopoietic stem cells (HSCs). To define the dynamics and heterogeneity of HSPCs that can be generated in vitro from hPSCs, we explored single-cell RNA sequencing (scRNAseq) in combination with single-cell protein expression analysis. Bioinformatics analyses and functional validation defined the transcriptomes of naïve progenitors and erythroid-, megakaryocyte-, and leukocyte-committed progenitors, and we identified CD44, CD326, ICAM2/CD9, and CD18, respectively, as markers of these progenitors. Using an artificial neural network that we trained on scRNAseq derived from human fetal liver, we identified a wide range of hPSC-derived HSPCs phenotypes, including a small group classified as HSCs. This transient HSC-like population decreased as differentiation proceeded, and was completely missing in the data set that had been generated using cells selected on the basis of CD43 expression. By comparing the single-cell transcriptome of in vitro-generated HSC-like cells with those generated within the fetal liver, we identified transcription factors and molecular pathways that can be explored in the future to improve the in vitro production of HSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862875PMC
http://dx.doi.org/10.1182/blood.2020006229DOI Listing

Publication Analysis

Top Keywords

hsc-like cells
8
derived human
8
hematopoietic stem
8
stem cells
8
fetal liver
8
liver identified
8
cells
6
single-cell
4
single-cell analyses
4
analyses machine
4

Similar Publications

Single-cell transcriptome profiling reveals blast cell heterogeneity and identifies novel therapeutic target IKZF2 in t(8;21) acute myeloid leukaemia.

Br J Haematol

August 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

The t(8;21)(q22;q22) translocation is one of the most recurrent cytogenetic aberrations in acute myeloid leukaemia (AML). While most patients achieve complete remission, approximately 40% of them still relapse. Early identification and elimination of leukaemia clones with relapse potential could improve prognosis for t(8;21) AML patients.

View Article and Find Full Text PDF

Widespread presence of bone marrow-like hematopoietic stem cell niche in invertebrate skeletons.

Sci Adv

June 2025

Fang Zongxi Center for Marine Evo-Devo, MOE Key Laboratory of Marine Genetics and Breeding & Shandong Key Laboratory of Marine Seed Industry, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.

Skeletal harboring of hematopoietic stem cells (HSCs) is generally considered as vertebrate-specific innovation during water-to-land transition. However, this long-standing view has not been rigorously evaluated as hematopoietic sites remain poorly understood in most invertebrate groups. We report, to our knowledge, the first discovery of abundant HSCs in adult mollusk shells, an invertebrate hematopoietic niche resembling vertebrate bone marrow (BM).

View Article and Find Full Text PDF

Macrophages play central roles in immunity, wound healing, and homeostasis - a functional diversity that is underpinned by varying developmental origins. The impact of ontogeny on properties of human macrophages is inadequately understood. We demonstrate that definitive human fetal liver (HFL) hematopoietic stem cells (HSCs) possess two divergent paths of macrophage specification that lead to distinct identities.

View Article and Find Full Text PDF

Progenitor effect in the spleen drives early recovery via universal hematopoietic cell inflation.

Cell Rep

February 2025

Division of Cell Regulation, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Cell Engineering, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo,

Hematopoietic stem cells (HSCs) possess the capacity to regenerate the entire hematopoietic system. However, the precise HSC dynamics in the early post-transplantation phase remain an enigma. Clinically, the initial hematopoiesis in the post-transplantation period is critical, necessitating strategies to accelerate hematopoietic recovery.

View Article and Find Full Text PDF

Non-alcoholic steatohepatitis (NASH), caused by fat buildup, can lead to liver inflammation and damage. Elucidation of the spatial distribution of fibrotic tissue in the fatty liver in NASH can be immensely useful to understand its pathogenesis. Thus, we developed a novel serial section-3D (SS3D) technique that combines high-resolution image acquisition with 3D construction software, which enabled highly detailed analysis of the mouse liver and extraction and quantification of stained tissues.

View Article and Find Full Text PDF