A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Soil bacterial diversity, structure, and function of Suaeda salsa in rhizosphere and non-rhizosphere soils in various habitats in the Yellow River Delta, China. | LitMetric

Soil bacterial diversity, structure, and function of Suaeda salsa in rhizosphere and non-rhizosphere soils in various habitats in the Yellow River Delta, China.

Sci Total Environ

College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Jinan Fruit Research Institute, All China Federation of Supply & Marketing Co-operatives, Jinan 250014, China. Electronic address:

Published: October 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Soil microorganisms play a key role in regulating the biogeochemical cycles of ecosystems. However, studies that quantitatively examine bacterial metabolic groups to predict the environmental and biological impacts are limited. In this research, we employed 16S rRNA gene sequencing on an Illumina MiSeq platform to analyze bacterial diversity, structure, function, and driving factors of Suaeda salsa in rhizosphere and non-rhizosphere soils in intertidal and supratidal habitats in the Yellow River Delta, China. Results showed that bacterial richness and Shannon diversity index of the rhizosphere soil were greater in the intertidal than in the supratidal habitat. Although the bacteria of the two habitats changed extremely in community structure, the bacterial groups related to carbohydrate metabolism (CM) and amino acid metabolism (AAM) had higher abundance than the other groups in both habitats. Furthermore, they were higher in the supratidal than the intertidal habitats, and bacterial groups associated with energy metabolism (EM) are opposite. Furthermore, bacterial diversity showed no significant difference between the rhizosphere and non-rhizosphere soils. In the intertidal habitat, the rhizosphere soil had higher EM but lower AAM and CM than the non-rhizosphere soil, which indicated that bacterial structure and function were obviously influenced by the root exudates of S. salsa under flooding and salt stresses. Redundancy analysis showed that the dominant phyla were significantly affected by available phosphorus (51.0%), total potassium (32.2%), moisture content (28.1%), available potassium (25.3%), electrical conductivity (24.2%), total nitrogen (22.8%), total carbon (21.9%), and soil organic matter (21.0%). Overall, the findings provide important insights into the roles of bacterial groups in coastal wetland under climate changes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.140144DOI Listing

Publication Analysis

Top Keywords

bacterial diversity
12
structure function
12
rhizosphere non-rhizosphere
12
non-rhizosphere soils
12
bacterial groups
12
diversity structure
8
suaeda salsa
8
salsa rhizosphere
8
habitats yellow
8
yellow river
8

Similar Publications