Subtypes of dementia with Lewy bodies are associated with α-synuclein and tau distribution.

Neurology

From the Departments of Psychiatry and Psychology (T.J.F., O.P.), Neurology (J.A.V.G., N.R.G.-R., R.J.U., Z.K.W.), and Neuroscience (M.E.M., O.A.R., D.W.D.) Mayo Clinic, Jacksonville, FL; Department of Psychiatry (N.A.), Yokohama University Medical Center, Japan; and Departments of Neurology (B.F.B.

Published: July 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To determine whether Lewy body disease subgroups have different clinical profiles.

Methods: Participants had dementia, autopsy-confirmed transitional or diffuse Lewy body disease (TLBD or DLBD) (n = 244), or Alzheimer disease (AD) (n = 210), and were seen at least twice (mean follow-up 6.2 ± 3.8 years). TLBD and DLBD groups were partitioned based on the presence or absence of neocortical neurofibrillary tangles using Braak staging. Four Lewy body disease subgroups and AD were compared on clinical features, dementia trajectory, and onset latency of probable dementia with Lewy bodies (DLB) or a DLB syndrome defined as probable DLB or dementia with one core feature of parkinsonism or probable REM sleep behavior disorder.

Results: In TLBD and DLBD without neocortical tangles, diagnostic sensitivity was strong for probable DLB (87% TLBD, 96% DLBD) and the DLB syndrome (97% TLBD, 98% DLBD) with median latencies <1 year from cognitive onset, and worse baseline attention-visual processing but better memory-naming scores than AD. In DLBD with neocortical tangles, diagnostic sensitivity was 70% for probable DLB and 77% for the DLB syndrome with respective median latencies of 3.7 years and 2.7 years from cognitive onset, each associated with tangle distribution. This group had worse baseline attention-visual processing than AD, but comparable memory-naming impairment. TLBD with neocortical tangles had 48% diagnostic sensitivity for probable DLB and 52% for the DLB syndrome, with median latencies >6 years from cognitive onset, and were cognitively similar to AD. Dementia trajectory was slowest for TLBD without neocortical tangles, and fastest for DLBD with neocortical tangles.

Conclusions: The phenotypic expression of DLB was associated with the distribution of α-synuclein and tau pathology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455327PMC
http://dx.doi.org/10.1212/WNL.0000000000009763DOI Listing

Publication Analysis

Top Keywords

lewy body
12
body disease
12
tlbd dlbd
12
dementia lewy
8
lewy bodies
8
α-synuclein tau
8
disease subgroups
8
dementia trajectory
8
dlb syndrome
8
probable dlb
8

Similar Publications

Odds ratios (OR) can overestimate risk when the prevalence of outcomes is more than 10%. We compared logistic and modified Poisson models in 5843 National Alzheimer's Coordinating Center decedents to examine associations of apolipoprotein () ε4, age at death, sex, and education with 7 neuropathologies. OR for neuritic plaques (6.

View Article and Find Full Text PDF

Background: The global burden of dementia is increasing, particularly in low- and middle-income countries. Dementia with Lewy bodies (DLB) is the second most common neurodegenerative dementia but remains underreported and frequently misdiagnosed. Its prevalence in Latin America is largely unknown.

View Article and Find Full Text PDF

Introduction: Dysfunction of the glymphatic system is thought to lead to build up of toxic proteins including β-amyloid and α-synuclein, and thus may be involved in dementia with Lewy bodies (DLB) and Alzheimer's disease (AD). The Diffusion Tensor Image Analysis Along the Perivascular Space (DTI-ALPS) index has been proposed as a marker of glymphatic function.

Aims: To investigate DTI-ALPS in mild cognitive impairment (MCI) and dementia, and determine its relationship with cognitive decline, and biomarkers of neurodegeneration.

View Article and Find Full Text PDF

Background And Objectives: Years before diagnosis of Parkinson disease (PD), dementia with Lewy bodies (DLB), or multiple system atrophy (MSA), mild prodromal manifestations can be detected. Longitudinal follow-up of people with prodromal synucleinopathy, particularly idiopathic/isolated REM sleep behavior disorder (iRBD), enables in-depth clinical phenotyping of early disease, which could facilitate stratification for clinical trials, provide the definition of appropriate end points, or predict phenoconversion more precisely. The aim of this study was to update and expand on previous studies assessing clinical evolution from iRBD to clinically diagnosed disease, up to 14 years before diagnosis.

View Article and Find Full Text PDF

Background And Objectives: α-Synuclein seed amplification assays (αSAAs) can improve the diagnosis of synucleinopathies and detect α-synuclein (αSyn) copathology in vivo in clinical practice. We aimed to evaluate the diagnostic performance of αSAA for detecting αSyn in CSF for diagnosing dementia with Lewy bodies (DLB) in a clinical cohort of cognitively impaired individuals. We explored how the coexistence of Alzheimer disease (AD) and αSyn pathology influences biomarker levels and clinical profiles.

View Article and Find Full Text PDF