Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Stress-induced post-translational modifications occur during autophagy and can result in generation of new epitopes and immune recognition. One such modification is the conversion of arginine to citrulline by peptidylarginine deiminase enzymes.

Methods: We used Human leukocyte antigen (HLA) transgenic mouse models to assess the immunogenicity of citrullinated peptide vaccine by cytokine Enzyme linked immunosorbant spot (ELISpot) assay. Vaccine efficacy was assessed in tumor therapy studies using HLA-matched B16 melanoma and ID8 ovarian models expressing either constitutive or interferon-gamma (IFNγ) inducible Major Histocompatibility Complex (MHC) class II (MHC-II) as represented by most human tumors. To determine the importance of CD4 T cells in tumor therapy, we analyzed the immune cell infiltrate into murine tumors using flow cytometry and performed therapy studies in the presence of CD4 and CD8 T cell depletion. We assessed the T cell repertoire to citrullinated peptides in ovarian cancer patients and healthy donors using flow cytometry.

Results: The combination of citrullinated vimentin and enolase peptides (Modi-1) stimulated strong CD4 T cell responses in mice. Responses resulted in a potent anti-tumor therapy against established tumors and generated immunological memory which protected against tumor rechallenge. Depletion of CD4, but not CD8 T cells, abrogated the primary anti-tumor response as well as the memory response to tumor rechallenge. This was further reinforced by successful tumor regression being associated with an increase in tumor-infiltrating CD4 T cells and a reduction in tumor-associated myeloid suppressor cells. The anti-tumor response also relied on direct CD4 T cell recognition as only tumors expressing MHC-II were rejected. A comparison of different Toll-like receptor (TLR)-stimulating adjuvants showed that Modi-1 induced strong Th1 responses when combined with granulocyte-macrophage colony-stimulating factor (GMCSF), TLR9/TLR4, TLR9, TLR3, TLR1/2 and TLR7 agonists. Direct linkage of the TLR1/2 agonist to the peptides allowed the vaccine dose to be reduced by 10-fold to 100-fold without loss of anti-tumor activity. Furthermore, a CD4 Th1 response to the citrullinated peptides was seen in ovarian cancer patients.

Conclusions: Modi-1 citrullinated peptide vaccine induces potent CD4-mediated anti-tumor responses in mouse models and a CD4 T cell repertoire is present in ovarian cancer patients to the citrullinated peptides suggesting that Modi-1 could be an effective vaccine for ovarian cancer patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304843PMC
http://dx.doi.org/10.1136/jitc-2020-000560DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
16
citrullinated peptides
12
cancer patients
12
cd4 cell
12
citrullinated vimentin
8
vimentin enolase
8
enolase peptides
8
induces potent
8
potent cd4-mediated
8
cd4-mediated anti-tumor
8

Similar Publications

Antibody-drug conjugates (ADCs) represent a promising therapeutic approach in gynecologic cancers, particularly ovarian and cervical malignancies. Agents such as mirvetuximab soravtansine, and tisotumab vedotin, targeting folate receptor alpha and tissue factor, respectively, reported clinical efficacy in patients with limited options. However, their use is associated with ocular toxicities, including keratopathy, blurred vision, and dry eye, which may impact adherence and quality of life.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) act as a vital player in the immunosuppressive tumor microenvironment (TME) and have received widespread attention in the treatment of cancer in recent times. Nevertheless, simultaneously inducing TAM repolarization and strengthening their phagocytic ability on cancer cells is still a significant challenge. Ferroptosis has received widespread attention due to its lethal effects on tumor cells, but its role in TAMs and its impact on tumor progression have not yet been defined.

View Article and Find Full Text PDF

Ovarian cancer remains a major health threat with limited treatment options available. It is characterized by immunosuppressive tumor microenvironment (TME) maintained by tumor-associated macrophages (TAMs) hindering anti-tumor responses and immunotherapy efficacy. Here we show that targeting retinoblastoma protein (Rb) by disruption of its LxCxE cleft pocket causes preferential cell death in Rbhigh M2 polarized or M2-like Rbhigh immunosuppressive TAMs by induction of ER stress, p53 and mitochondria-related cell death pathways.

View Article and Find Full Text PDF

Aims: This review summarizes the role and future prospects of nuclear medicine in ovarian cancer, focusing on novel radiopharmaceuticals beyond FDG for diagnostic, predictive, and therapeutic applications within a theranostic framework.

Materials And Methods: A narrative literature review was conducted using major databases. Peer-reviewed articles addressing non-FDG radiopharmaceuticals in ovarian cancer were identified and assessed; FDG-based studies were excluded due to the availability of prior comprehensive reviews.

View Article and Find Full Text PDF

Pregnancy and breast cancer in young women: current updates and future directions.

Ther Adv Med Oncol

September 2025

Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, 15503 Ventura Blvd, Suite 150, Los Angeles, CA 90095, USA.

The relationship between pregnancy and breast cancer is complicated. On one hand, pregnancy can influence breast cancer risk and tumor biology, and on the other, a breast cancer diagnosis and its subsequent management can significantly affect fertility, family planning, and future pregnancies. This interaction presents challenges unique to young women with breast cancer (YWBC).

View Article and Find Full Text PDF