98%
921
2 minutes
20
Proteolysis targeting chimeras, PROTACs, are emerging as a powerful strategy for exerting exogenous control over protein levels, allowing small molecules to exploit the ubiquitin-proteasome pathway for targeted protein degradation. This highlight focuses on the fusion of photochemistry with these bifunctional compounds, which has provided a novel pathway for spatiotemporally tuning the activation of PROTACs in the form of their photocaged and photoswitchable versions. Photocaged PROTACs consist of a hindered optolabile group that detaches only upon irradiation at a specific wavelength, releasing the active PROTAC. These modified PROTACs are inactive in the dark. Photoswitchable PROTACs are photoisomerizable molecules with azobenzene linkages that are active in either the cis or trans form and inactive in the other. The isomers interconvert upon irradiation with an appropriate wavelength of light and relax to the thermodynamically stable isomer in the dark or with another wavelength of light. Although photocaged PROTACs only permit activation control for protein degradation, photoswitching PROTACs offer reversible activation and deactivation by using suitable wavelengths of light.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cmdc.202000249 | DOI Listing |
J Phys Chem B
September 2025
School of Science, RMIT University, Melbourne 3000, Australia.
Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.
View Article and Find Full Text PDFJAMA Neurol
September 2025
Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia.
Importance: Exposure to fine particulate matter air pollution (PM2.5) may increase risk for dementia. It is unknown whether this association is mediated by dementia-related neuropathologic change found at autopsy.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Department of Chemistry, Faculty of Science and Health, Koya University, Koya, KOY45, Kurdistan Region, Iraq.
Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by joint inflammation. Given the side effects of conventional treatments, this study focuses on the anti-inflammatory effects of purslane (Portulaca oleracea) and turmeric (Curcuma longa). The research is driven by the growing demand for plant based-treatment for safer therapeutic options for RA management.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Associate Professor, School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh-Punjab 147301, India.
Alcoholic fatty liver disease (AFLD) is a leading cause of chronic liver disease worldwide, contributing to significant morbidity and mortality. Despite its growing prevalence, no FDA-approved pharmacological treatments exist, leaving lifestyle modifications as the primary intervention. AFLD pathogenesis involves a complex interplay of lipid accumulation, oxidative stress, insulin resistance, and inflammation, highlighting the need for innovative therapeutic approaches.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Medical School, Laboratory of Genetics and Molecular Pathology, University Hassan II, Casablanca, Morocco.
In-stent restenosis remains a significant challenge in interventional cardiology despite technological advancements. This retrospective case-control study conducted at the University Hospital Center Ibn Rochd in Casablanca (2020-2023) examined risk factors associated with coronary in-stent restenosis in 68 patients equally distributed between restenosis and no-restenosis groups. Diabetes emerged as a powerful predictor of restenosis (RR=4.
View Article and Find Full Text PDF