Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The aberrant aggregation of certain peptides and proteins, forming extracellular plaques of fibrillar material, is one of the hallmarks of amyloid diseases, such as Alzheimer's and Parkinson's. Herein, we have designed a new family of solvatochromic dyes based on the 9-amino-quinolimide moiety capable of reporting during the early stages of amyloid fibrillization. We have rationally improved the photophysical properties of quinolimides by placing diverse amino groups at the 9-position of the quinolimide core, leading to higher solvatochromic and fluorogenic character and higher lifetime dependence on the hydrophobicity of the environment, which represent excellent properties for the sensitive detection of prefibrillar aggregates. Among the different probes prepared, the 9-azetidinyl-quinolimide derivative showed striking performance in the following β-amyloid peptide (Aβ) aggregation in solution in real time and identifying the formation of different types of early oligomers of Aβ, the most important species linked to cytotoxicity, using novel, multidimensional fluorescence microscopy, with one- or two-photon excitation. Interestingly, the new dye allowed the visualization of proteinaceous inclusion bodies in a zebrafish model with neuronal damage induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Our results support the potential of the novel fluorophores as powerful tools to follow amyloid aggregation using fluorescence microscopy , revealing heterogeneous populations of different types of aggregates and, more broadly, to study protein interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.0c00587 | DOI Listing |