Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Structural genomic variants (SVs) are ubiquitous and play a major role in adaptation and speciation. Yet, comparative and population genomics have focused predominantly on gene duplications and large-effect inversions. The lack of a common framework for studying all SVs is hampering progress towards a more systematic assessment of their evolutionary significance. Here we (i) review how different types of SVs affect ecological and evolutionary processes; (ii) suggest unifying definitions and recommendations for future studies; and (iii) provide a roadmap for the integration of SVs in ecoevolutionary studies. In doing so, we lay the foundation for population genomics, theoretical, and experimental approaches to understand how the full spectrum of SVs impacts ecological and evolutionary processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tree.2020.03.002 | DOI Listing |