A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Hydraulic conductance differences among sorghum genotypes to explain variation in restricted transpiration rates. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sorghum (Sorghum bicolor L.) is an important crop for production in dryland regions of the globe. Traits identified in many sorghum lines that apparently make them adapted for dryland conditions are restricted transpiration rate both early in the soil drying cycle and under high atmospheric vapour pressure deficit. It was hypothesised that these responses could be a result of differences in hydraulic conductance of the plants: those with low hydraulic conductance would be more likely to express restricted transpiration rates. The location of the lower hydraulic conductance in the plant could also be important with a low conductance in the leaf xylem to stomata pathway possibly being more advantageous than in the root. In this study, the amount and location of the hydraulic conductance was measured in 20 sorghum genotypes. Those genotypes that expressed an early decrease in transpiration rate with soil drying had greater plant and leaf hydraulic conductance than those genotypes that had the later decreases in transpiration rate, which was in contrast with what was hypothesised. However, sorghum genotypes that segregated between two groups based on expression of a maximum transpiration trait also segregated based on their hydraulic conductance. Those genotypes that expressed the maximum transpiration trait had lower hydraulic conductance for the intact plant and in the leaves.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP13246DOI Listing

Publication Analysis

Top Keywords

hydraulic conductance
32
sorghum genotypes
12
restricted transpiration
12
transpiration rate
12
hydraulic
8
transpiration rates
8
soil drying
8
conductance
8
lower hydraulic
8
genotypes expressed
8

Similar Publications