Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Since the first neurodevelopmental models that sought to explain the influx of risky behaviors during adolescence were proposed, there have been a number of revisions, variations and criticisms. Despite providing a strong multi-disciplinary heuristic to explain the development of risk behavior, extant models have not yet reliably isolated neural systems that underlie risk behaviors in adolescence. To address this gap, we screened 2017 adolescents from an ongoing longitudinal study that assessed 15-health risk behaviors, targeting 104 adolescents (Age Range: 17-to-21.4), characterized as high-or-average/low risk-taking. Participants completed the Monetary Incentive Delay (MID) fMRI task, examining reward anticipation to "big win" versus "neutral". We examined neural response variation associated with both baseline and longitudinal (multi-wave) risk classifications. Analyses included examination of a priori regions of interest (ROIs); and exploratory non-parametric, whole-brain analyses. Hypothesis-driven ROI analysis revealed no significant differences between high- and average/low-risk profiles using either baseline or multi-wave classification. Results of whole-brain analyses differed according to whether risk assessment was based on baseline or multi-wave data. Despite significant mean-level task activation, these results do not generalize prior neural substrates implicated in reward anticipation and adolescent risk-taking. Further, these data indicate that whole-brain differences may depend on how risk-behavior profiles are defined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7262007 | PMC |
http://dx.doi.org/10.1016/j.dcn.2020.100798 | DOI Listing |