Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polypharmacy is the use of drug combinations and is commonly used for treating complex and terminal diseases. Despite its effectiveness in many cases, it poses high risks of adverse side effects. Polypharmacy side-effects occur due to unwanted interactions of combined drugs, and they can cause severe complications to patients which results in increasing the risks of morbidity and leading to new mortalities. The use of drug polypharmacy is currently in its early stages; thus, the knowledge of their probable side-effects is limited. This encouraged multiple works to investigate machine learning techniques to efficiently and reliably predict adverse effects of drug combinations. In this context, the Decagon model is known to provide state-of-the-art results. It models polypharmacy side-effect data as a knowledge graph and formulates finding possible adverse effects as a link prediction task over the knowledge graph. The link prediction is solved using an embedding model based on graph convolutions. Despite its effectiveness, the Decagon approach still suffers from a high rate of false positives. In this work, we propose a new knowledge graph embedding technique that uses multi-part embedding vectors to predict polypharmacy side-effects. Like in the Decagon model, we model polypharmacy side effects as a knowledge graph. However, we perform the link prediction task using an approach based on tensor decomposition. Our experimental evaluation shows that our approach outperforms the Decagon model with 12% and 16% margins in terms of the area under the ROC and precision recall curves, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7233093PMC

Publication Analysis

Top Keywords

knowledge graph
20
polypharmacy side-effects
12
decagon model
12
link prediction
12
drug combinations
8
despite effectiveness
8
side effects
8
adverse effects
8
prediction task
8
knowledge
6

Similar Publications

Drug-target interaction (DTI) prediction is essential for the development of novel drugs and the repurposing of existing ones. However, when the features of drug and target are applied to biological networks, there is a lack of capturing the relational features of drug-target interactions. And the corresponding multimodal models mainly depend on shallow fusion strategies, which results in suboptimal performance when trying to capture complex interaction relationships.

View Article and Find Full Text PDF

A Python-scripted software tool has been developed to help study the heterogeneity of gene changes, markedly or moderately expressed, when several experimental conditions are compared. The analysis workflow encloses a scorecard that groups genes based on relative fold-change and statistical significance, providing additional functions that facilitate knowledge extraction. The scorecard reports highlight unique patterns of gene regulation, such as genes whose expression is consistently up- or down-regulated across experiments, all of which are supported by graphs and summaries to characterize the dataset under investigation.

View Article and Find Full Text PDF

Spatial transcriptomics (ST) reveals gene expression distributions within tissues. Yet, predicting spatial gene expression from histological images still faces the challenges of limited ST data that lack prior knowledge, and insufficient capturing of inter-slice heterogeneity and intra-slice complexity. To tackle these challenges, we introduce FmH2ST, a foundation model-based method for spatial gene expression prediction.

View Article and Find Full Text PDF

Artificial intelligence (AI) based anticancer drug recommendation systems have emerged as powerful tools for precision dosing. Although existing methods have advanced in terms of predictive accuracy, they encounter three significant obstacles, including the "black-box" problem resulting in unexplainable reasoning, the computational difficulty for graphbased structures, and the combinatorial explosion during multistep reasoning. To tackle these issues, we introduce a novel Macro-Micro agent Drug sensitivity inference (MarMirDrug).

View Article and Find Full Text PDF

Motivation: Graph Neural Network (GNN) models have emerged in many fields and notably for biological networks constituted by genes or proteins and their interactions. The majority of enrichment study methods apply over-representation analysis and gene/protein set scores according to the existing overlap between pathways. Such methods neglect knowledges coming from the interactions between the gene/protein sets.

View Article and Find Full Text PDF