Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Glycogen storage disease type Ia (GSD-Ia) is an inherited metabolic disease caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC) which plays a critical role in blood glucose homeostasis by catalyzing the hydrolysis of glucose-6-phosphate (G6P) to glucose and phosphate in the terminal step of glycogenolysis and gluconeogenesis. Patients with GSD-Ia manifest life-threatening fasting hypoglycemia along with the excessive accumulation of hepatic glycogen and triglycerides which results in hepatomegaly and a risk of long-term complications such as hepatocellular adenoma and carcinoma (HCA/HCC). The etiology of HCA/HCC development in GSD-Ia, however, is unknown. Recent studies have shown that the livers in model animals of GSD-Ia display impairment of autophagy, a cellular recycling process which is critical for energy metabolism and cellular homeostasis. However, molecular mechanisms of autophagy impairment and its involvement in pathogenesis in GSD-Ia are still under investigation. Here, we summarize the latest advances for signaling pathways implicated in hepatic autophagy impairment and the roles of autophagy in hepatic tumorigenesis in GSD-Ia. In addition, recent evidence has illustrated that autophagy plays an important role in hepatic metabolism and liver-directed gene therapy mediated by recombinant adeno-associated virus (rAAV). Therefore, we highlight the possible role of hepatic autophagy in metabolic control and rAAV-mediated gene therapy for GSD-Ia. In this review, we also provide potential therapeutic strategies for GSD-Ia on the basis of molecular mechanisms underlying hepatic autophagy impairment in GSD-Ia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jimd.12267 | DOI Listing |