Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Tropomyosin (Tpm) is a two-stranded parallel α-helical coiled-coil protein, and studying its structure is crucial for understanding the nature of coiled coils. Previously, we found that the N-terminal half of the human skeletal muscle α-Tpm (α-Tpm 140) was less structurally stable in the presence of phosphate ions than the coiled-coil protein carrier (CCPC) 140 variant with 18 mutated residues, in which all amino acid residues located at the interface between the two α-helices were completely conserved. A classical hypothesis explains that interhelical interactions stabilize the coiled-coil structure. In this study, we tested the hypothesis that the structural stability of Tpm and its variant is governed by the binding of multivalent ions that form a bridge between charged side chains located at positions , , and of the heptad repeat on a single α-helical chain. We found that the structural stability of α-Tpm 140 and CCPC 140 markedly increased upon addition of divalent cations and divalent anions, respectively. We also clarified that the structural stability of the α-Tpm 140/CCPC 140 heteromeric coiled-coil molecule was governed by the stability of a less stable α-helical chain. These results demonstrated that the entire structural stability of Tpm is determined by the stability of a single α-helix. Our findings provide new insights into the study of the structure of coiled-coil proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.0c00203 | DOI Listing |