98%
921
2 minutes
20
In vertebrates, the olfactory bulb (OB) is the zone of the brain devoted to receiving the olfactory stimuli. The size of the OB relative to the size of the brain has been positively correlated to a good olfactory capability but, recently, this correlation was questioned after new investigation techniques were developed. Among them, the isotropic fractionator allows to estimate the number of neurons and non-neurons in a given portion of nervous tissue. To date, this technique has been applied in a number of species; in particular the OB was separately analyzed in numerous mammals and in a single crocodile species. Thus, a quantitative description of the OB's cells is available for a small portion of vertebrates. Main aim of this work was to apply isotropic fractionator to investigate the olfactory capability of elasmobranch fishes, whose traditional concept of outstanding olfaction has recently been scaled down by anatomical and physiological studies. For this purpose, the OB of two elasmobranch species, Galeus melastomus and Scyliorhinus canicula, was studied leading to the determination of the number of neurons vs non-neurons in the OB of the specimens. In addition, the obtained cell quantification was related to the olfactory epithelium surface area to obtain a new parameter that encapsulates both information on the peripheral olfactory organ and the OB. The analyzed species resulted in an overall similar quantitative organization of the peripheral olfactory system; slight differences were detected possibly reflecting different environment preference and feeding strategy. Moreover, the non-neurons/neurons ratio of these species, compared to those available in the literature, seems to place elasmobranch fishes among the vertebrate species in which olfaction plays an important role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.zool.2020.125796 | DOI Listing |
Brain
September 2025
IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, 40139, Italy.
An early diagnosis of Parkinson's disease (PD) represents a challenge and novel accurate biomarkers are therefore urgently needed. Detection of phosphorylated α-synuclein (p-α-syn) in skin nerve fibers has shown promise as such a marker. However, its accuracy for the identification of PD among patients with early signs of parkinsonism has not been thoroughly explored.
View Article and Find Full Text PDFDiabetes Obes Metab
September 2025
Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark.
Background: Taste and smell disorders are more common in individuals with diabetes, particularly among those with low insulin sensitivity or central obesity. These disorders may affect glycaemic control by altering dietary habits. This study aimed to investigate self-reported taste and smell dysfunction in individuals with diabetes and explore associations with clinical and behavioural factors.
View Article and Find Full Text PDFJ Integr Neurosci
August 2025
Complex Operative Unit (UOC) Otolaryngology-Head and Neck Surgery, Ospedale San Camillo de Lellis, Azienda Sanitaria Locale (ASL) Rieti-Sapienza University, 02100 Rieti, Italy.
Nasal cytology is evolving into a promising tool for diagnosing neurological and psychiatric disorders, especially those such as Alzheimer's and Parkinson's diseases. Moreover, recent research has indicated that biomarkers differ greatly between samples taken before and after death. Nasal cytology might help to identify the early stages of cognitive decline.
View Article and Find Full Text PDFObjective: Nebulized ciprofloxacin-dexamethasone represents an adjuvant medication utilized following airway surgery. However, minimal objective information exists on this treatment, especially over more extended periods. This study measured the safety, tolerability, and adherence to nebulized ciprofloxacin-dexamethasone utilized in the outpatient setting after endoscopic airway surgery for adult patients.
View Article and Find Full Text PDFMov Disord Clin Pract
September 2025
Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.
Background: Early identification of pathological α-synuclein deposition (αSynD) may improve understanding of Lewy body disorder (LBD) progression and enable timely disease-modifying treatments.
Objectives: We investigated αSynD using a seed amplification assay and assessed prodromal LBD symptoms in individuals with idiopathic olfactory dysfunction (iOD).
Methods: In this cross-sectional, case-control study, we included iOD participants and normosmic healthy controls (HC) aged 55 to 75 years without diagnoses of dementia with Lewy bodies, Parkinson's disease (PD), or other major neurological disorders.