Spatial synchrony is related to environmental change in Finnish moth communities.

Proc Biol Sci

Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65, FI-00014, Finland.

Published: May 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spatially distinct pairs of sites may have similarly fluctuating population dynamics across large geographical distances, a phenomenon called spatial synchrony. However, species rarely exist in isolation, but rather as members of interactive communities, linked with other communities through dispersal (i.e. a metacommunity). Using data on Finnish moth communities sampled across 65 sites for 20 years, we examine the complex synchronous/anti-synchronous relationships among sites using the geography of synchrony framework. We relate site-level synchrony to mean and temporal variation in climatic data, finding that colder and drier sites-and those with the most drastic temperature increases-are important for spatial synchrony. This suggests that faster-warming sites contribute most strongly to site-level estimates of synchrony, highlighting the role of a changing climate to spatial synchrony. Considering the spatial variability in climate change rates is therefore important to understand metacommunity dynamics and identify habitats which contribute most strongly to spatial synchrony.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287349PMC
http://dx.doi.org/10.1098/rspb.2020.0684DOI Listing

Publication Analysis

Top Keywords

spatial synchrony
20
finnish moth
8
moth communities
8
synchrony
7
spatial
6
synchrony environmental
4
environmental change
4
change finnish
4
communities
4
communities spatially
4

Similar Publications

Theory, manipulation experiments and observational studies on biodiversity and ecosystem functioning largely concur that higher intraspecific diversity may increase the overall productivity of populations, buffer against environmental change and stabilize long-term productivity. However, evidence comes primarily from small and short-lived organisms. We tested for effects of genetic diversity on variation in forest growth by combining long-term data on annual individual growth rate (basal area increment (BAI)) with estimates of intrapopulation genetic variation (based on RAD-seq SNPs) for 18 natural pedunculate oak populations.

View Article and Find Full Text PDF

Community composition as an overlooked driver of spatial population synchrony.

PNAS Nexus

September 2025

School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St, Box 355020, Seattle, WA 98105, USA.

Animal populations often display coherent temporal fluctuations in their abundance, with far-ranging implications for species persistence and ecosystem stability. The key mechanisms driving spatial population synchrony include organismal dispersal, spatially correlated environmental dynamics (Moran effect) and concordant consumer-resource dynamics. Disentangling these mechanisms, however, is notoriously difficult in natural systems, and the extent to which the biotic environment (intensity and types of biotic interactions) mediates metapopulation dynamics remains a largely unanswered question.

View Article and Find Full Text PDF

The extent to which phenological synchrony between trophic levels may be disrupted by environmental change has been a topic of increased focus in recent years. Phenological associations between deciduous trees, phytophagous insects, and their consumers (e.g.

View Article and Find Full Text PDF

Nonpharmaceutical approaches based on gamma entrainment using sensory stimuli (GENUS) have shown promise in reducing Alzheimer's disease pathology in mouse models. While human studies remain limited, GENUS has been shown to alleviate aspects of neurodegeneration in patients with Alzheimer's disease. In this study, we analyze intracranial EEG data from 490 contacts across eleven patients with refractory epilepsy in response to three visual stimulation conditions.

View Article and Find Full Text PDF

Brain functional connectivity (FC), the temporal synchrony between brain networks, is essential to understand the functional organization of the brain and to identify changes due to neurological disorders, development, treatment, and other phenomena. Independent component analysis (ICA) is a matrix decomposition method used extensively for simultaneous estimation of functional brain topography and connectivity. However, estimation of FC via ICA is often sub-optimal due to the use of ad hoc estimation methods or temporal dimension reduction prior to ICA.

View Article and Find Full Text PDF