98%
921
2 minutes
20
Study Design: mRNA analysis.
Objective: The aim of this study was to identify differentially expressed genes (DEGs) in disc degeneration, analyze the potential biological functions of DEGs, and screen for a new target to prevent the degeneration.
Summary Of Background Data: Intervertebral disc degeneration (IDD) is an irreversible process and causes long-term heavy socioeconomic burdens. Existing and therapies under development are unable to prevent disc degeneration in a safe and effective manner. Therefore, elucidating the potential mechanism underlying degeneration and the development of new targets for IDD therapy are urgently required.
Methods: Nucleus pulposus (NP) cells from mild and severe IDD (Ctrl and IDD groups) were separated, and DEGs of the two groups were identified with mRNA microarray analysis, followed by bioinformatics analysis.Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was performed to verify the microarray results. Gene over-expression and silencing technologies were used to study the role of plant homeodomain finger protein 6 (PHF6). qRT-PCR and western blot analyses were used to detect the expressions of collagen II (COL2), matrix metalloproteinases 13 (MMP13), and ADAM metallopeptidase with thrombospondin type 1 motif 4 (ADAMTS4).
Results: The study identified 377 up- and 116 downregulated DEGs in NP cells from two groups. These DEGs were mainly involved in cellular and metabolic processes and enriched in immune system and nucleotide metabolism pathways. Upregulated PHF6, with the highest verified fold change, was significantly increased in the IDD group. Over-expressing PHF6 in Ctrl NP cells significantly inhibited the expression of COL2 and enhanced the expressions of MMP13 and ADAMTS4, whereas silencing PHF6 in IDD NP cells reversed such expression alterations.
Conclusion: Upregulated PHF6 caused IDD by promoting extracellular matrix degradation; therefore, PHF6 could be developed as a potential novel target to prevent the degeneration. Our DEG profiling of NP cells from IDD patients provided a database to identify the key genes involved in IDD.
Level Of Evidence: N/A.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/BRS.0000000000003549 | DOI Listing |
J Inflamm Res
September 2025
Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
Introduction: While nucleus pulposus cell (NPC) degeneration is a primary driver of intervertebral disc degeneration (IVDD), the cellular heterogeneity and molecular interactions underlying NPC degeneration remain poorly characterized. Previous studies have shown that EGFR signaling plays a significant role in NPC differentiation and collagen matrix production. Consequently, this study aims to identify the critical downstream regulatory molecule of EGFR in the process of NPC degeneration.
View Article and Find Full Text PDFCureus
August 2025
Department of Neurosurgery, Faculty of Medicine, Medical University of Plovdiv, Plovdiv, BGR.
This report presents the case of a 36-year-old man complaining of chronic low back pain and numbness along the posterolateral surface of the right leg. Magnetic resonance imaging (MRI) revealed a disc degeneration and protrusion at the L-S level and an extensive fluid-equivalent formation with a craniocaudal dimension of 8 cm at the S-S level. Initially, due to the minimal clinical complaints, the cyst was considered asymptomatic.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA.
Intervertebral disc degeneration (IDD) is a major cause of low back pain (LBP), significantly affecting on global disability and healthcare costs. Traditional treatments primarily focus on symptom management rather than addressing the underlying causes, such as the decline in nucleus pulposus (NP) cells and reduced extracellular matrix (ECM) synthesis. Cell therapy shows promise by replenishing NP cells, activating resident cells, and enhancing ECM deposition.
View Article and Find Full Text PDFBackground: Intervertebral disc degeneration (IDD) is a prevalent spinal condition frequently associated with pain and motor impairment, imposing a substantial burden on quality of life. Despite extensive investigations into the genetic predisposition to IDD, the precise pathogenic genes and molecular pathways involved remain inadequately characterized, underscoring the need for continued research to clarify its genetic underpinnings.
Methods: This study leveraged IDD data from the FinnGen R12 cohort and integrated expression quantitative trait loci data across 49 tissues from the Genotype-Tissue Expression version 8 database to perform a cross-tissue transcriptome-wide association study (TWAS).
Medicine (Baltimore)
September 2025
The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
Lower back pain caused by intervertebral disk degeneration (IDD) is a common problem among middle-aged and older adults. We aimed to identify novel diagnostic biomarkers of IDD and analyze the potential association between key genes and immune cell infiltration. We screened differentially expressed genes (DEGs) related to IDD and gene sets associated with mitochondrial energy metabolism using the Gene Expression Omnibus and GeneCards databases, respectively.
View Article and Find Full Text PDF