A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Metal-Acid Synergy: Hydrodeoxygenation of Anisole over Pt/Al-SBA-15. | LitMetric

Metal-Acid Synergy: Hydrodeoxygenation of Anisole over Pt/Al-SBA-15.

ChemSusChem

Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3000, Australia.

Published: September 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hydrodeoxygenation (HDO) is a promising technology to upgrade fast pyrolysis bio-oils but it requires active and selective catalysts. Here we explore the synergy between the metal and acid sites in the HDO of anisole, a model pyrolysis bio-oil compound, over mono- and bi-functional Pt/(Al)-SBA-15 catalysts. Ring hydrogenation of anisole to methoxycyclohexane occurs over metal sites and is structure sensitive; it is favored over small (4 nm) Pt nanoparticles, which confer a turnover frequency (TOF) of approximately 2000 h and a methoxycyclohexane selectivity of approximately 90 % at 200 °C and 20 bar H ; in contrast, the formation of benzene and the desired cyclohexane product appears to be structure insensitive. The introduction of acidity to the SBA-15 support promotes the demethyoxylation of the methoxycyclohexane intermediate, which increases the selectivity to cyclohexane from 15 to 92 % and the cyclohexane productivity by two orders of magnitude (from 15 to 6500 mmol g  h ). Optimization of the metal-acid synergy confers an 865-fold increase in the cyclohexane production per gram of Pt and a 28-fold reduction in precious metal loading. These findings demonstrate that tuning the metal-acid synergy provides a strategy to direct complex catalytic reaction networks and minimize precious metal use in the production of bio-fuels.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202000764DOI Listing

Publication Analysis

Top Keywords

metal-acid synergy
12
precious metal
8
synergy hydrodeoxygenation
4
hydrodeoxygenation anisole
4
anisole pt/al-sba-15
4
pt/al-sba-15 hydrodeoxygenation
4
hydrodeoxygenation hdo
4
hdo promising
4
promising technology
4
technology upgrade
4

Similar Publications