98%
921
2 minutes
20
The association between white matter hyperintensities (WMH) and amyloid accumulation over time in cognitively normal, amyloid-negative elderly people remains largely unexplored. In order to study whether baseline WMH were associated with longitudinal subthreshold amyloid accumulation, 159 cognitively normal participants from the Alzheimer's Disease Neuroimaging Initiative who were amyloid-negative at baseline were examined. All the participants underwent a T1 and a Fluid-Attenuated Inversion Recovery MRI scan at baseline. Amyloid PET imaging was performed at baseline and follow-up visits in 2-year intervals for up to 8 years. Partial volume correction was applied for quantifying cortical Standardised Uptake Value Ratios (SUVR). The associations between global and regional WMH burden and amyloid accumulation were assessed using linear mixed models adjusted by demographic characteristics and baseline SUVR. Partial volume correction increased the measured annual rate of change (+2.4%) compared to that obtained from non-corrected data (+0.5%). There were no significant correlations between baseline WMHs and baseline subthreshold cortical amyloid uptake. In a longitudinal analysis, increased baseline cortical SUVR and increased baseline burden of global (p = 0.006), frontal (p = 0.006), and parietal WMH (p = 0.003) were associated with faster amyloid accumulation. WMH-related amyloid accumulation occurred in parietal, frontal, and, to a lesser extent, cingulate cortices. These results remained unchanged after a sensitivity analysis excluding participants with the highest cortical SUVRs. This is the first study to identify a specific spatial distribution of WMH which is associated with future amyloid accumulation in cognitively normal elderly subjects without PET-detectable amyloid pathology. These findings may have important implications in prevention trials for the early identification of amyloid accumulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2020.116944 | DOI Listing |
Neurology
October 2025
Department of Radiology, Mayo Clinic, Rochester, MN.
Background And Objectives: The relationship between insomnia and cognitive decline is poorly understood. We investigated associations between chronic insomnia, longitudinal cognitive outcomes, and brain health in older adults.
Methods: From the population-based Mayo Clinic Study of Aging, we identified cognitively unimpaired older adults with or without a diagnosis of chronic insomnia who underwent annual neuropsychological assessments (z-scored global cognitive scores and cognitive status) and had quantified serial imaging outcomes (amyloid-PET burden [centiloid] and white matter hyperintensities from MRI [WMH, % of intracranial volume]).
Alzheimers Dement
September 2025
Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, South Korea.
Introduction: We developed and validated age-related amyloid beta (Aβ) positron emission tomography (PET) trajectories using a statistical model in cognitively unimpaired (CU) individuals.
Methods: We analyzed 849 CU Korean and 521 CU non-Hispanic White (NHW) participants after propensity score matching. Aβ PET trajectories were modeled using the generalized additive model for location, scale, and shape (GAMLSS) based on baseline data and validated with longitudinal data.
Geroscience
September 2025
Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
The aging population worldwide faces an increasing burden of age-related conditions, with Alzheimer's disease being a prominent neurodegenerative concern. Drug repurposing, the practice of identifying new therapeutic applications for existing drugs, offers a promising avenue for accelerated intervention. In this study, we utilized the yeast Saccharomyces cerevisiae to screen a library of 1760 FDA-approved compounds, both with and without rapamycin, to assess potential synergistic effects on yeast growth.
View Article and Find Full Text PDFBiomed Pharmacother
September 2025
Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma 378, Ethiopia; Division of Research & Development, Lovely Professional University, Phagwara 144411, India. Electronic address:
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterised by cognitive decline and the accumulation of misfolded proteins, including amyloid-beta and hyperphosphorylated tau, which impair neuronal function and promote cell death. These misfolded proteins disrupt proteostasis by forming toxic aggregates that exacerbate disease progression. Molecular chaperones, such as heat shock proteins, actively maintain protein homeostasis by assisting in proper folding, preventing aggregation, and promoting the clearance of misfolded proteins.
View Article and Find Full Text PDFJ Korean Med Sci
September 2025
Department of Neurosurgery, Korea University Anam Hospital, College of Medicine, Korea University, Seoul, Korea.
Background: Alzheimer's disease (AD) and vascular dementia (VaD) have distinct pathognomonic features, but they frequently co-occur as mixed dementia (MD) in elderly adults. This study aimed to develop a novel MD mouse model using bilateral carotid artery stenosis (BCAS) in 5 times familial Alzheimer's disease (5xFAD) transgenic mice and characterize its behavioral and histological features.
Methods: Thirteen C57BL/6 and sixteen 5xFAD transgenic mice were prepared.