A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Nucleotide sugar profiles throughout development in wildtype and galt knockout zebrafish. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nucleotide sugars (NS) are fundamental molecules in life and play a key role in glycosylation reactions and signal conduction. Several pathways are involved in the synthesis of NS. The Leloir pathway, the main pathway for galactose metabolism, is crucial for production of uridine diphosphate (UDP)-glucose and UDP-galactose. The most common metabolic disease affecting this pathway is galactose-1-phosphate uridylyltransferase (GALT) deficiency, that despite a lifelong galactose-restricted diet, often results in chronically debilitating complications. Alterations in the levels of UDP-sugars leading to galactosylation abnormalities have been hypothesized as a key pathogenic factor. However, UDP-sugar levels measured in patient cell lines have shown contradictory results. Other NS that might be affected, differences throughout development, as well as tissue specific profiles have not been investigated. Using recently established UHPLC-MS/MS technology, we studied the complete NS profiles in wildtype and galt knockout zebrafish (Danio rerio). Analyses of UDP-hexoses, UDP-hexosamines, CMP-sialic acids, GDP-fucose, UDP-glucuronic acid, UDP-xylose, CDP-ribitol, and ADP-ribose profiles at four developmental stages and in tissues (brain and gonads) in wildtype zebrafish revealed variation in NS levels throughout development and differences between examined tissues. More specifically, we found higher levels of CMP-N-acetylneuraminic acid, GDP-fucose, UDP-glucuronic acid, and UDP-xylose in brain and of CMP-N-glycolylneuraminic acid in gonads. Analysis of the same NS profiles in galt knockout zebrafish revealed no significant differences from wildtype. Our findings in galt knockout zebrafish, even when challenged with galactose, do not support a role for abnormalities in UDP-glucose or UDP-galactose as a key pathogenic factor in GALT deficiency, under the tested conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540370PMC
http://dx.doi.org/10.1002/jimd.12265DOI Listing

Publication Analysis

Top Keywords

galt knockout
16
knockout zebrafish
16
wildtype galt
8
udp-glucose udp-galactose
8
galt deficiency
8
key pathogenic
8
pathogenic factor
8
gdp-fucose udp-glucuronic
8
udp-glucuronic acid
8
acid udp-xylose
8

Similar Publications