A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Machine learning provides evidence that stroke risk is not linear: The non-linear Framingham stroke risk score. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Current stroke risk assessment tools presume the impact of risk factors is linear and cumulative. However, both novel risk factors and their interplay influencing stroke incidence are difficult to reveal using traditional additive models. The goal of this study was to improve upon the established Revised Framingham Stroke Risk Score and design an interactive Non-Linear Stroke Risk Score. Leveraging machine learning algorithms, our work aimed at increasing the accuracy of event prediction and uncovering new relationships in an interpretable fashion. A two-phase approach was used to create our stroke risk prediction score. First, clinical examinations of the Framingham offspring cohort were utilized as the training dataset for the predictive model. Optimal Classification Trees were used to develop a tree-based model to predict 10-year risk of stroke. Unlike classical methods, this algorithm adaptively changes the splits on the independent variables, introducing non-linear interactions among them. Second, the model was validated with a multi-ethnicity cohort from the Boston Medical Center. Our stroke risk score suggests a key dichotomy between patients with history of cardiovascular disease and the rest of the population. While it agrees with known findings, it also identified 23 unique stroke risk profiles and highlighted new non-linear relationships; such as the role of T-wave abnormality on electrocardiography and hematocrit levels in a patient's risk profile. Our results suggested that the non-linear approach significantly improves upon the baseline in the c-statistic (training 87.43% (CI 0.85-0.90) vs. 73.74% (CI 0.70-0.76); validation 75.29% (CI 0.74-0.76) vs 65.93% (CI 0.64-0.67), even in multi-ethnicity populations. The clinical implications of the new risk score include prioritization of risk factor modification and personalized care at the patient level with improved targeting of interventions for stroke prevention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241753PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232414PLOS

Publication Analysis

Top Keywords

stroke risk
32
risk score
20
risk
14
stroke
11
machine learning
8
framingham stroke
8
risk factors
8
score
6
non-linear
5
learning evidence
4

Similar Publications