Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We conducted large-scale screening test on drugs that were already approved for other diseases to find pigmentation-modulating agents. Among drugs with potential for pigmentation control, we selected sorafenib and further investigated the effect on pigmentation using HM3KO melanoma cells. As a result of treating melanoma cells with sorafenib, pigmentation was promoted in terms of melanin content and tyrosinase activity. Sorafenib increased mRNA and protein levels of pigmentation-related genes such as MITF, tyrosinase and TRP1. To uncover the action mechanism, we investigated the effect of sorafenib on the intracellular signalling pathways. Sorafenib reduced phosphorylation of AKT and ERK, suggesting that sorafenib induces pigmentation through inhibition of the AKT and ERK pathways. In addition, sorafenib significantly increased the level of active β-catenin, together with activation of β-catenin signalling. Mechanistic study revealed that sorafenib decreased phosphorylation of serine 9 (S9) of GSK3β, while it increased phosphorylation of tyrosine 216 (Y216) of GSK3β. These results suggest that sorafenib activates the β-catenin signalling through the regulation of GSK3β phosphorylation, thereby affecting the pigmentation process.

Download full-text PDF

Source
http://dx.doi.org/10.1111/exd.14112DOI Listing

Publication Analysis

Top Keywords

β-catenin signalling
12
melanoma cells
12
sorafenib
10
sorafenib induces
8
induces pigmentation
8
sorafenib increased
8
akt erk
8
pigmentation
6
pigmentation regulation
4
β-catenin
4

Similar Publications

Background: Genetic modifiers are believed to play an important role in the onset and severity of polycystic kidney disease (PKD), but identifying these modifiers has been challenging due to the lack of effective methodologies.

Methods: We generated zebrafish mutants of IFT140, a skeletal ciliopathy gene and newly identified autosomal dominant PKD (ADPKD) gene, to examine skeletal development and kidney cyst formation in larval and juvenile mutants. Additionally, we utilized ift140 crispants, generated through efficient microhomology-mediated end joining (MMEJ)-based genome editing, to compare phenotypes with mutants and conduct a pilot genetic modifier screen.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by low levels of SMN protein. Several therapeutic approaches boosting SMN are approved for human patients, delivering remarkable improvements in lifespan and symptoms. However, emerging phenotypes, including neurodevelopmental comorbidities, are being reported in some treated SMA patients, indicative of alterations in brain development.

View Article and Find Full Text PDF

Cardiac hypertrophy is a common adaptation to cardiovascular stress and often a prelude to heart failure. We examined how S-palmitoylation of the small GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), impacts cardiomyocyte stress signaling. Mutation of the cysteine-178 palmitoylation site impaired activation of Rac1 when overexpressed in cardiomyocytes.

View Article and Find Full Text PDF

Common neural choice signals reflect accumulated evidence, not confidence.

Cereb Cortex

August 2025

Brain and Cognition, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.

Centro-parietal electroencephalogram signals (centro-parietal positivity and error positivity) correlate with the reported level of confidence. According to recent computational work these signals reflect evidence which feeds into the computation of confidence, not directly confidence. To test this prediction, we causally manipulated prior beliefs to selectively affect confidence, while leaving objective task performance unaffected.

View Article and Find Full Text PDF

Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.

View Article and Find Full Text PDF