98%
921
2 minutes
20
The use of visual sensors for monitoring people in their living environments is critical in processing more accurate health measurements, but their use is undermined by the issue of privacy. Silhouettes, generated from RGB video, can help towards alleviating the issue of privacy to some considerable degree. However, the use of silhouettes would make it rather complex to discriminate between different subjects, preventing a subject-tailored analysis of the data within a free-living, multi-occupancy home. This limitation can be overcome with a strategic fusion of sensors that involves wearable accelerometer devices, which can be used in conjunction with the silhouette video data, to match video clips to a specific patient being monitored. The proposed method simultaneously solves the problem of Person ReID using silhouettes and enables home monitoring systems to employ sensor fusion techniques for data analysis. We develop a multimodal deep-learning detection framework that maps short video clips and accelerations into a latent space where the Euclidean distance can be measured to match video and acceleration streams. We train our method on the SPHERE Calorie Dataset, for which we show an average area under the ROC curve of 76.3% and an assignment accuracy of 77.4%. In addition, we propose a novel triplet loss for which we demonstrate improving performances and convergence speed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248699 | PMC |
http://dx.doi.org/10.3390/s20092576 | DOI Listing |
JMIR Cancer
September 2025
Cancer Patients Europe, Rue de l'Industrie 24, Brussels, 1000, Belgium.
Background: Breast cancer is the most common cancer among women and a leading cause of mortality in Europe. Early detection through screening reduces mortality, yet participation in mammography-based programs remains suboptimal due to discomfort, radiation exposure, and accessibility issues. Thermography, particularly when driven by artificial intelligence (AI), is being explored as a noninvasive, radiation-free alternative.
View Article and Find Full Text PDFRev Cardiovasc Med
August 2025
Department of Cardiology, University Hospitals of Leicester NHS Trust, Glenfield Hospital, LE3 9QP Leicester, UK.
Adult congenital heart disease (ACHD) constitutes a heterogeneous and expanding patient cohort with distinctive diagnostic and management challenges. Conventional detection methods are ineffective at reflecting lesion heterogeneity and the variability in risk profiles. Artificial intelligence (AI), including machine learning (ML) and deep learning (DL) models, has revolutionized the potential for improving diagnosis, risk stratification, and personalized care across the ACHD spectrum.
View Article and Find Full Text PDFCureus
August 2025
Anaesthesiology, Base Hospital, Thambuththegama, Thambuththegama, LKA.
Medical photography is crucial in modern medicine, and this article offers a five-step framework to help healthcare workers take clear, professional clinical photos. It is widely used globally for diagnosis, documentation, education, and publication. Smartphones have made capturing medical images easier, even without formal training, but quality varies without proper guidance.
View Article and Find Full Text PDFRisk Anal
September 2025
US Army Engineer Research and Development Center, Concord, Massachusetts, USA.
The COVID-19 pandemic has exposed critical gaps in our management of systemic risks within complex, interconnected systems. This review examines 10 key areas where artificial intelligence (AI) and data analytics can significantly enhance pandemic preparedness, response, and recovery. Inadequate early warning systems, insufficient real-time data on resource needs, and the limitations of traditional epidemiological models in capturing complex disease dynamics are among the challenges analyzed.
View Article and Find Full Text PDFBDJ Open
September 2025
Operative Dentistry & Endodontics, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan.
Background: Artificial Intelligence (AI) has become increasingly integrated into dental diagnostics, particularly for detecting carious lesions. While AI offers benefits such as improved accuracy and efficiency, its use raises important ethical concerns, including transparency, patient privacy, autonomy, diversity and accountability. This scoping review aims to identify these ethical concerns using a structured ethical framework.
View Article and Find Full Text PDF