Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In understanding the dynamics of the spread of an infectious disease, it is important to understand how a town's place in a network of towns within a region will impact how the disease spreads to that town and from that town. In this article, we take a model for the spread of an infectious disease in a single town and scale it up to simulate a region containing multiple towns. The model is validated by looking at how adding additional towns and commuters influences the outbreak in a single town. We then look at how the centrality of a town within a network influences the outbreak. Our main finding is that the commuters coming into a town have a greater effect on whether an outbreak will spread to a town than the commuters going out. The findings on centrality of a town and how it influences an outbreak could potentially be used to help influence future policy and intervention strategies such as school closure policies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246727 | PMC |
http://dx.doi.org/10.3390/ijerph17093119 | DOI Listing |