98%
921
2 minutes
20
Restriction factors are structurally and functionally diverse cellular proteins that constitute a first line of defense against viral pathogens. Exceptions exist, but typically these proteins are upregulated by interferons (IFNs), target viral components, and are rapidly evolving due to the continuous virus-host arms race. Restriction factors may target HIV replication at essentially each step of the retroviral replication cycle, and the suppression of viral transcription and the degradation of viral RNA transcripts are emerging as major innate immune defense mechanisms. Recent data show that some antiviral factors, such as the tripartite motif-containing protein 22 (TRIM22) and the g-IFN-inducible protein 16 (IFI16), do not target HIV-1 itself but limit the availability of the cellular transcription factor specificity protein 1 (Sp1), which is critical for effective viral gene expression. In addition, several RNA-interacting cellular factors including RNAse L, the NEDD4-binding protein 1 (N4BP1), and the zinc finger antiviral protein (ZAP) have been identified as important immune effectors against HIV-1 that may be involved in the maintenance of the latent viral reservoirs, representing the major obstacle against viral elimination and cure. Here, we review recent findings on specific cellular antiviral factors targeting HIV-1 transcription or viral RNA transcripts and discuss their potential role in viral latency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290996 | PMC |
http://dx.doi.org/10.3390/v12050495 | DOI Listing |
mBio
September 2025
Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, Washington, USA.
Accurate timing estimates of when participants acquire HIV in HIV prevention trials are necessary for determining antibody levels at acquisition. The Antibody-Mediated Prevention (AMP) Studies showed that a passively administered broadly neutralizing antibody can prevent the acquisition of HIV from a neutralization-sensitive virus. We developed a pipeline for estimating the date of detectable HIV acquisition (DDA) in AMP Study participants using diagnostic and viral sequence data.
View Article and Find Full Text PDFLab Chip
September 2025
Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA.
CRISPR technology offers an entirely new approach to therapeutic development because it can target specific nucleotide sequences with high specificity, however, preclinical animal models are not useful for evaluation of their efficacy and potential off-target effects because of high gene sequence variations between animals and humans. Here, we explored the potential of using the CRISPR effector Cas13 to develop a new therapeutic approach for influenza A virus (IAV) infections based on its ability to specifically and robustly cleave single-strand viral RNA using a complementary CRISPR RNA (crRNA). We engineered crRNAs to target highly conserved regions in the IAV genome to create a potential pan-viral treatment strategy.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
September 2025
Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai 200433, China.
PLoS Pathog
September 2025
Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China.
The exocyst complex is a heterooctameric protein complex, the individual components of the complex are thought to act on specific biological processes. However, the role of Sec10, the central subunit of the complex, in host defense and viral replication remains unclear. Here, we reported that Sec10 significantly impairs the activation of JAK-STAT signal pathway of type I IFN (IFN-I) response against both DNA- and RNA-viruses, and promotes viral replication, respectively.
View Article and Find Full Text PDFPLoS Biol
September 2025
Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America.
Despite the success of antiretroviral therapy in suppressing plasma viremia in people living with human immunodeficiency virus type-1 (HIV-1), persistent viral RNA expression in tissue reservoirs is observed and can contribute to HIV-1-induced immunopathology and comorbidities. Infection of long-lived innate immune cells, such as tissue-resident macrophages and microglia may contribute to persistent viral RNA production and chronic inflammation. We recently reported that de novo cytoplasmic expression of HIV-1 intron-containing RNA (icRNA) in macrophages and microglia leads to MDA5 and MAVS-dependent innate immune sensing and induction of type I IFN responses, demonstrating that HIV icRNA is a pathogen-associated molecular pattern (PAMP).
View Article and Find Full Text PDF