Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objective: Spinal cord stimulation (SCS) is a common neurostimulation therapy to treat chronic pain. Computational models represent a valuable tool to study the potential mechanisms of action of SCS and to optimize the design and implementation of SCS technologies. However, it is imperative that these computational models include the appropriate level of detail to accurately predict the neural response to SCS and to correlate model predictions with clinical outcomes. Therefore, the goal of this study was to investigate several anatomic and technical factors that may affect model-based predictions of neural activation during thoracic SCS.
Approach: We developed computational models that consisted of detailed finite element models of the lower thoracic spinal cord, surrounding tissues, and implanted SCS electrode arrays. We positioned multicompartment models of sensory axons within the spinal cord to calculate the activation threshold for each sensory axon. We then investigated how activation thresholds changed as a function of several anatomical variables (e.g. spine geometry, dorsal rootlet anatomy), stimulation type (i.e. voltage-controlled vs. current-controlled), electrode impedance, lead position, lead type, and electrical properties of surrounding tissues (e.g. dura conductivity, frequency-dependent conductivity).
Main Results: Several anatomic and modeling factors produced significant percent differences or errors in activation thresholds. Rostrocaudal positioning of the cathode with respect to the vertebrae had a large effect (up to 32%) on activation thresholds. Variability in electrode impedance produced significant changes in activation thresholds for voltage-controlled stimulation (38% to 51%), but had little effect on activation thresholds for current-controlled stimulation (less than 13%). Changing the dura conductivity also produced significant differences in activation thresholds.
Significance: This study demonstrates several anatomic and technical factors that can affect the neural response to SCS. These factors should be considered in clinical implementation and in future computational modeling studies of thoracic SCS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351789 | PMC |
http://dx.doi.org/10.1088/1741-2552/ab8fc4 | DOI Listing |